Spaces:
Configuration error
Configuration error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py | |
| """ | |
| Misc functions, including distributed helpers. | |
| Mostly copy-paste from torchvision references. | |
| """ | |
| from typing import List, Optional | |
| import torch | |
| import torch.distributed as dist | |
| import torchvision | |
| from torch import Tensor | |
| import warnings | |
| import torch.nn.functional as F | |
| import math | |
| def inverse_sigmoid(x, eps=1e-3): | |
| x = x.clamp(min=0, max=1) | |
| x1 = x.clamp(min=eps) | |
| x2 = (1 - x).clamp(min=eps) | |
| return torch.log(x1/x2) | |
| def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
| # Cut & paste from PyTorch official master until it's in a few official releases - RW | |
| # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
| "The distribution of values may be incorrect.", | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| l = norm_cdf((a - mean) / std) | |
| u = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [l, u], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * l - 1, 2 * u - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
| # type: (Tensor, float, float, float, float) -> Tensor | |
| r"""Fills the input Tensor with values drawn from a truncated | |
| normal distribution. The values are effectively drawn from the | |
| normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
| with values outside :math:`[a, b]` redrawn until they are within | |
| the bounds. The method used for generating the random values works | |
| best when :math:`a \leq \text{mean} \leq b`. | |
| Args: | |
| tensor: an n-dimensional `torch.Tensor` | |
| mean: the mean of the normal distribution | |
| std: the standard deviation of the normal distribution | |
| a: the minimum cutoff value | |
| b: the maximum cutoff value | |
| Examples: | |
| >>> w = torch.empty(3, 5) | |
| >>> nn.init.trunc_normal_(w) | |
| """ | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
| def resize(input, | |
| size=None, | |
| scale_factor=None, | |
| mode='nearest', | |
| align_corners=None, | |
| warning=True): | |
| if warning: | |
| if size is not None and align_corners: | |
| input_h, input_w = tuple(int(x) for x in input.shape[2:]) | |
| output_h, output_w = tuple(int(x) for x in size) | |
| if output_h > input_h or output_w > output_h: | |
| if ((output_h > 1 and output_w > 1 and input_h > 1 | |
| and input_w > 1) and (output_h - 1) % (input_h - 1) | |
| and (output_w - 1) % (input_w - 1)): | |
| warnings.warn( | |
| f'When align_corners={align_corners}, ' | |
| 'the output would more aligned if ' | |
| f'input size {(input_h, input_w)} is `x+1` and ' | |
| f'out size {(output_h, output_w)} is `nx+1`') | |
| if isinstance(size, torch.Size): | |
| size = tuple(int(x) for x in size) | |
| return F.interpolate(input, size, scale_factor, mode, align_corners) | |
| def _max_by_axis(the_list): | |
| # type: (List[List[int]]) -> List[int] | |
| maxes = the_list[0] | |
| for sublist in the_list[1:]: | |
| for index, item in enumerate(sublist): | |
| maxes[index] = max(maxes[index], item) | |
| return maxes | |
| class NestedTensor(object): | |
| def __init__(self, tensors, mask: Optional[Tensor]): | |
| self.tensors = tensors | |
| self.mask = mask | |
| def to(self, device): | |
| # type: (Device) -> NestedTensor # noqa | |
| cast_tensor = self.tensors.to(device) | |
| mask = self.mask | |
| if mask is not None: | |
| assert mask is not None | |
| cast_mask = mask.to(device) | |
| else: | |
| cast_mask = None | |
| return NestedTensor(cast_tensor, cast_mask) | |
| def decompose(self): | |
| return self.tensors, self.mask | |
| def __repr__(self): | |
| return str(self.tensors) | |
| def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): | |
| # TODO make this more general | |
| if tensor_list[0].ndim == 3: | |
| if torchvision._is_tracing(): | |
| # nested_tensor_from_tensor_list() does not export well to ONNX | |
| # call _onnx_nested_tensor_from_tensor_list() instead | |
| return _onnx_nested_tensor_from_tensor_list(tensor_list) | |
| # TODO make it support different-sized images | |
| max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
| # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) | |
| batch_shape = [len(tensor_list)] + max_size | |
| b, c, h, w = batch_shape | |
| dtype = tensor_list[0].dtype | |
| device = tensor_list[0].device | |
| tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
| mask = torch.ones((b, h, w), dtype=torch.bool, device=device) | |
| for img, pad_img, m in zip(tensor_list, tensor, mask): | |
| pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| m[: img.shape[1], : img.shape[2]] = False | |
| else: | |
| raise ValueError("not supported") | |
| return NestedTensor(tensor, mask) | |
| # _onnx_nested_tensor_from_tensor_list() is an implementation of | |
| # nested_tensor_from_tensor_list() that is supported by ONNX tracing. | |
| def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: | |
| max_size = [] | |
| for i in range(tensor_list[0].dim()): | |
| max_size_i = torch.max( | |
| torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) | |
| ).to(torch.int64) | |
| max_size.append(max_size_i) | |
| max_size = tuple(max_size) | |
| # work around for | |
| # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| # m[: img.shape[1], :img.shape[2]] = False | |
| # which is not yet supported in onnx | |
| padded_imgs = [] | |
| padded_masks = [] | |
| for img in tensor_list: | |
| padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] | |
| padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) | |
| padded_imgs.append(padded_img) | |
| m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) | |
| padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) | |
| padded_masks.append(padded_mask.to(torch.bool)) | |
| tensor = torch.stack(padded_imgs) | |
| mask = torch.stack(padded_masks) | |
| return NestedTensor(tensor, mask=mask) | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |