Spaces:
Sleeping
Sleeping
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| # ✅ Step 1: Emoji 翻译模型(你自己训练的模型) | |
| emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned" | |
| emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True) | |
| emoji_model = AutoModelForCausalLM.from_pretrained( | |
| emoji_model_id, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda" if torch.cuda.is_available() else "cpu") | |
| emoji_model.eval() | |
| # ✅ Step 2: 冒犯性文本识别模型 | |
| classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1) | |
| def classify_emoji_text(text: str): | |
| """ | |
| Step 1: 翻译文本中的 emoji | |
| Step 2: 使用分类器判断是否冒犯 | |
| """ | |
| prompt = f"""请判断下面的文本是否具有冒犯性。 | |
| 这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。 | |
| 如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。 | |
| 文本如下: | |
| {text} | |
| """ | |
| input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device) | |
| with torch.no_grad(): | |
| output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False) | |
| decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| translated_text = decoded.strip().split("文本如下:")[-1].strip() | |
| result = classifier(translated_text)[0] | |
| label = result["label"] | |
| score = result["score"] | |
| return translated_text, label, score | |