Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
|
@@ -1,25 +1,24 @@
|
|
| 1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 2 |
import torch
|
| 3 |
|
| 4 |
-
# ✅ Step 1:
|
| 5 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
| 6 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
| 7 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
emoji_model_id,
|
| 9 |
-
|
| 10 |
-
torch_dtype=torch.float16
|
| 11 |
-
|
| 12 |
-
)
|
| 13 |
emoji_model.eval()
|
| 14 |
|
| 15 |
-
# ✅ Step 2:
|
| 16 |
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1)
|
| 17 |
|
| 18 |
def classify_emoji_text(text: str):
|
| 19 |
"""
|
| 20 |
-
|
|
|
|
| 21 |
"""
|
| 22 |
-
# ✅ 构造翻译 prompt
|
| 23 |
prompt = f"""请判断下面的文本是否具有冒犯性。
|
| 24 |
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。
|
| 25 |
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。
|
|
@@ -27,18 +26,12 @@ def classify_emoji_text(text: str):
|
|
| 27 |
{text}
|
| 28 |
"""
|
| 29 |
|
| 30 |
-
# ✅ 生成翻译结果
|
| 31 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
| 32 |
with torch.no_grad():
|
| 33 |
-
output_ids = emoji_model.generate(
|
| 34 |
-
**input_ids,
|
| 35 |
-
max_new_tokens=50,
|
| 36 |
-
do_sample=False
|
| 37 |
-
)
|
| 38 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 39 |
translated_text = decoded.strip().split("文本如下:")[-1].strip()
|
| 40 |
|
| 41 |
-
# ✅ 送入第二阶段冒犯性识别
|
| 42 |
result = classifier(translated_text)[0]
|
| 43 |
label = result["label"]
|
| 44 |
score = result["score"]
|
|
|
|
| 1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 2 |
import torch
|
| 3 |
|
| 4 |
+
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
| 5 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
| 6 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
| 7 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
emoji_model_id,
|
| 9 |
+
trust_remote_code=True,
|
| 10 |
+
torch_dtype=torch.float16
|
| 11 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 12 |
emoji_model.eval()
|
| 13 |
|
| 14 |
+
# ✅ Step 2: 冒犯性文本识别模型
|
| 15 |
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1)
|
| 16 |
|
| 17 |
def classify_emoji_text(text: str):
|
| 18 |
"""
|
| 19 |
+
Step 1: 翻译文本中的 emoji
|
| 20 |
+
Step 2: 使用分类器判断是否冒犯
|
| 21 |
"""
|
|
|
|
| 22 |
prompt = f"""请判断下面的文本是否具有冒犯性。
|
| 23 |
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。
|
| 24 |
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。
|
|
|
|
| 26 |
{text}
|
| 27 |
"""
|
| 28 |
|
|
|
|
| 29 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
| 30 |
with torch.no_grad():
|
| 31 |
+
output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 33 |
translated_text = decoded.strip().split("文本如下:")[-1].strip()
|
| 34 |
|
|
|
|
| 35 |
result = classifier(translated_text)[0]
|
| 36 |
label = result["label"]
|
| 37 |
score = result["score"]
|