Creating app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st # Import Streamlit for creating a web app interface
|
| 2 |
+
import pandas as pd # Import pandas for data manipulation
|
| 3 |
+
from serpapi import GoogleSearch # Import SerpAPI to perform Google searches
|
| 4 |
+
import re # Import regex module for pattern matching
|
| 5 |
+
import tempfile # Import tempfile for creating temporary files
|
| 6 |
+
import shutil # Import shutil for file operations
|
| 7 |
+
import os # Import os for handling file paths
|
| 8 |
+
from difflib import SequenceMatcher # Import SequenceMatcher to calculate string similarity
|
| 9 |
+
|
| 10 |
+
# Function to construct a Google search query from applicant data
|
| 11 |
+
def construct_query(row):
|
| 12 |
+
"""Constructs the Google search query using applicant data."""
|
| 13 |
+
query = str(row['Applicant Name']) # Start with the applicant's name
|
| 14 |
+
print(f"Constructing query for Applicant Name: {row['Applicant Name']}")
|
| 15 |
+
|
| 16 |
+
# Additional fields to include in the search query if available
|
| 17 |
+
optional_fields = ['Job Title', 'State', 'City', 'Skills']
|
| 18 |
+
for field in optional_fields:
|
| 19 |
+
if field in row and pd.notna(row[field]): # Check if the field exists and is not NaN
|
| 20 |
+
value = row[field]
|
| 21 |
+
if isinstance(value, str) and value.strip(): # Ensure the value is a non-empty string
|
| 22 |
+
query += f" {value.strip()}" # Add the value to the query
|
| 23 |
+
elif not isinstance(value, str): # Handle non-string values
|
| 24 |
+
query += f" {str(value).strip()}"
|
| 25 |
+
query += " linkedin" # Append "linkedin" to focus search on LinkedIn profiles
|
| 26 |
+
print(f"Constructed query: {query}")
|
| 27 |
+
return query
|
| 28 |
+
|
| 29 |
+
# Function to extract the name from a LinkedIn profile URL
|
| 30 |
+
def get_name_from_url(link):
|
| 31 |
+
"""Extracts the name part from a LinkedIn profile URL."""
|
| 32 |
+
print(f"Extracting name from LinkedIn URL: {link}")
|
| 33 |
+
match = re.search(r'linkedin\.com/in/([a-zA-Z0-9-]+)', link) # Regex to find profile name
|
| 34 |
+
if match:
|
| 35 |
+
name = match.group(1).replace('-', ' ') # Replace dashes with spaces for readability
|
| 36 |
+
print(f"Extracted name: {name}")
|
| 37 |
+
return name
|
| 38 |
+
print("No name extracted from URL.")
|
| 39 |
+
return None
|
| 40 |
+
|
| 41 |
+
# Function to calculate similarity between two names
|
| 42 |
+
def calculate_similarity(name1, name2):
|
| 43 |
+
"""Calculates similarity between two names."""
|
| 44 |
+
similarity = SequenceMatcher(None, name1.lower().strip(), name2.lower().strip()).ratio()
|
| 45 |
+
print(f"Calculated similarity between '{name1}' and '{name2}': {similarity}")
|
| 46 |
+
return similarity
|
| 47 |
+
|
| 48 |
+
# Function to fetch LinkedIn links using SerpAPI
|
| 49 |
+
def fetch_linkedin_links(query, api_key, applicant_name):
|
| 50 |
+
"""Fetches LinkedIn profile links and validates them against the applicant's name."""
|
| 51 |
+
linkedin_regex = r'https://(www|[a-z]{2})\.linkedin\.com/.*' # Regex for LinkedIn links
|
| 52 |
+
try:
|
| 53 |
+
print(f"Fetching LinkedIn links for query: {query}")
|
| 54 |
+
search = GoogleSearch({
|
| 55 |
+
"q": query, # The search query
|
| 56 |
+
"num": 5, # Number of search results
|
| 57 |
+
"api_key": api_key # API key for SerpAPI
|
| 58 |
+
})
|
| 59 |
+
|
| 60 |
+
# Execute the search and get results
|
| 61 |
+
results = search.get_dict()
|
| 62 |
+
organic_results = results.get("organic_results", []) # Extract organic search results
|
| 63 |
+
print(f"Raw search results: {organic_results}")
|
| 64 |
+
|
| 65 |
+
# Iterate through results to find LinkedIn links
|
| 66 |
+
for result in organic_results:
|
| 67 |
+
link = result.get("link") # Get the URL of the search result
|
| 68 |
+
print(f"Checking link: {link}")
|
| 69 |
+
if re.match(linkedin_regex, link): # Check if the link matches LinkedIn regex
|
| 70 |
+
profile_name = get_name_from_url(link) # Extract the name from the URL
|
| 71 |
+
if profile_name:
|
| 72 |
+
similarity = calculate_similarity(applicant_name, profile_name) # Validate name similarity
|
| 73 |
+
if similarity >= 0.5: # Accept link if similarity is above the threshold
|
| 74 |
+
print(f"Valid LinkedIn link found: {link} (Similarity: {similarity})")
|
| 75 |
+
return link
|
| 76 |
+
else:
|
| 77 |
+
print(f"Rejected link: {link} (Similarity: {similarity})")
|
| 78 |
+
else:
|
| 79 |
+
print(f"Link does not match LinkedIn regex: {link}")
|
| 80 |
+
|
| 81 |
+
print("No valid LinkedIn link found.")
|
| 82 |
+
return None
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"Error fetching link for query '{query}': {e}")
|
| 85 |
+
st.error(f"Error fetching link for query '{query}': {e}")
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
# Function to process the uploaded Excel file
|
| 89 |
+
def process_file(file, api_key):
|
| 90 |
+
"""Processes the uploaded Excel file to fetch LinkedIn profile links."""
|
| 91 |
+
try:
|
| 92 |
+
print("Reading uploaded Excel file...")
|
| 93 |
+
df = pd.read_excel(file) # Read the Excel file into a pandas DataFrame
|
| 94 |
+
print(f"Initial DataFrame:\n{df.head()}")
|
| 95 |
+
|
| 96 |
+
# Filter out rows with empty or missing applicant names
|
| 97 |
+
df = df[df['Applicant Name'].notna()]
|
| 98 |
+
df = df[df['Applicant Name'].str.strip() != '']
|
| 99 |
+
print(f"Filtered DataFrame:\n{df.head()}")
|
| 100 |
+
|
| 101 |
+
# Generate search queries for each applicant
|
| 102 |
+
df['Search Query'] = df.apply(construct_query, axis=1)
|
| 103 |
+
print(f"DataFrame with Search Queries:\n{df[['Applicant Name', 'Search Query']].head()}")
|
| 104 |
+
|
| 105 |
+
# Fetch LinkedIn links for each applicant
|
| 106 |
+
df['LinkedIn Link'] = df.apply(
|
| 107 |
+
lambda row: fetch_linkedin_links(row['Search Query'], api_key, row['Applicant Name']),
|
| 108 |
+
axis=1
|
| 109 |
+
)
|
| 110 |
+
print(f"DataFrame with LinkedIn Links:\n{df.head()}")
|
| 111 |
+
|
| 112 |
+
# Save the updated DataFrame to a temporary file
|
| 113 |
+
temp_dir = tempfile.mkdtemp() # Create a temporary directory
|
| 114 |
+
output_file = os.path.join(temp_dir, "updated_with_linkedin_links.csv")
|
| 115 |
+
df.to_csv(output_file, index=False) # Save as CSV
|
| 116 |
+
print(f"CSV file created at: {output_file}")
|
| 117 |
+
|
| 118 |
+
return output_file
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"Error processing file: {e}")
|
| 121 |
+
st.error(f"Error processing file: {e}")
|
| 122 |
+
return None
|
| 123 |
+
|
| 124 |
+
# Streamlit UI setup
|
| 125 |
+
st.title("LinkedIn Profile Link Scraper") # App title
|
| 126 |
+
st.markdown("Upload an Excel file with applicant details, and get a CSV with LinkedIn profile links.") # Description
|
| 127 |
+
|
| 128 |
+
# Input for SerpAPI Key
|
| 129 |
+
api_key = st.text_input("Enter your SerpAPI Key", type="password") # Input for SerpAPI key
|
| 130 |
+
|
| 131 |
+
# File uploader widget
|
| 132 |
+
uploaded_file = st.file_uploader("Upload Excel File", type=["xlsx"]) # File uploader for Excel files
|
| 133 |
+
|
| 134 |
+
# Process the file if both file and API key are provided
|
| 135 |
+
if uploaded_file and api_key:
|
| 136 |
+
st.write("Processing file...")
|
| 137 |
+
output_file = process_file(uploaded_file, api_key) # Process the uploaded file
|
| 138 |
+
|
| 139 |
+
if output_file:
|
| 140 |
+
with open(output_file, "rb") as f: # Open the CSV for download
|
| 141 |
+
st.download_button(
|
| 142 |
+
label="Download Updated CSV",
|
| 143 |
+
data=f,
|
| 144 |
+
file_name="updated_with_linkedin_links.csv",
|
| 145 |
+
mime="text/csv"
|
| 146 |
+
)
|
| 147 |
+
print("File ready for download.")
|
| 148 |
+
|
| 149 |
+
# Clean up the temporary directory after download
|
| 150 |
+
shutil.rmtree(os.path.dirname(output_file))
|
| 151 |
+
print("Temporary files cleaned up.")
|
| 152 |
+
elif not api_key:
|
| 153 |
+
st.warning("Please enter your SerpAPI key to proceed.") # Warning for missing API key
|