Spaces:
Runtime error
Runtime error
| # app.py β Robust Character Generator Space | |
| from datasets import load_dataset | |
| import gradio as gr, json, os, random, torch, spaces | |
| from diffusers import FluxPipeline, AutoencoderKL | |
| from gradio_client import Client | |
| from live_preview_helpers import ( | |
| flux_pipe_call_that_returns_an_iterable_of_images as flux_iter, | |
| ) | |
| # 1. Device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # 2. FLUX image pipeline | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 | |
| ).to(device) | |
| good_vae = AutoencoderKL.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16 | |
| ).to(device) | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe) | |
| # 3. LLM client (robust) | |
| LLM_SPACES = [ | |
| "https://huggingfaceh4-zephyr-chat.hf.space", | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "huggingface-projects/gemma-2-9b-it", | |
| ] | |
| def first_live_space(space_ids: list[str]) -> Client: | |
| for sid in space_ids: | |
| try: | |
| print(f"[info] probing {sid}") | |
| c = Client(sid, hf_token=os.getenv("HF_TOKEN")) | |
| _ = c.predict("ping", 8, api_name="/chat") | |
| print(f"[info] using {sid}") | |
| return c | |
| except Exception as e: | |
| print(f"[warn] {sid} unusable β {e}") | |
| raise RuntimeError("No live chat Space found!") | |
| llm_client = first_live_space(LLM_SPACES) | |
| CHAT_API = "/chat" | |
| def call_llm(prompt: str, | |
| max_tokens: int = 256, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9) -> str: | |
| try: | |
| return llm_client.predict( | |
| prompt, max_tokens, temperature, top_p, api_name=CHAT_API | |
| ).strip() | |
| except Exception as exc: | |
| print(f"[error] LLM failure β {exc}") | |
| return "β¦" | |
| # 4. Persona dataset | |
| ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train") | |
| def random_persona() -> str: | |
| return ds[random.randint(0, len(ds) - 1)]["persona"] | |
| # 5. Text prompts | |
| PROMPT_TEMPLATE = """Generate a character with this persona description: | |
| {persona_description} | |
| In a world with this description: | |
| {world_description} | |
| Write the character in JSON with keys: | |
| name, background, appearance, personality, skills_and_abilities, | |
| goals, conflicts, backstory, current_situation, | |
| spoken_lines (list of strings). | |
| Respond with JSON only (no markdown).""" | |
| WORLD_PROMPT = ( | |
| "Invent a short, unique and vivid world description. " | |
| "Respond with the description only." | |
| ) | |
| # 6. Helper functions | |
| def random_world() -> str: | |
| return call_llm(WORLD_PROMPT, max_tokens=120) | |
| def safe_json_parse(raw): | |
| """Try to parse JSON, return None if fail, and log.""" | |
| try: | |
| return json.loads(raw) | |
| except Exception as e: | |
| print(f"[ERROR] JSON parsing failed: {e}") | |
| print(f"[DEBUG] Raw output: {raw[:1000]}") | |
| return None | |
| def infer_flux(character_json): | |
| # Defensive: If not a dict or missing appearance, bail out | |
| if not isinstance(character_json, dict) or "appearance" not in character_json: | |
| print("[ERROR] No valid appearance to generate image.") | |
| return None | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=character_json["appearance"], | |
| guidance_scale=3.5, | |
| num_inference_steps=28, | |
| width=1024, | |
| height=1024, | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ): | |
| yield img | |
| def generate_character(world_desc: str, persona_desc: str, | |
| progress=gr.Progress(track_tqdm=True)): | |
| # First attempt | |
| raw = call_llm( | |
| PROMPT_TEMPLATE.format( | |
| persona_description=persona_desc, | |
| world_description=world_desc, | |
| ), | |
| max_tokens=1024, | |
| ) | |
| character = safe_json_parse(raw) | |
| if character: | |
| return character | |
| # Retry once | |
| raw2 = call_llm( | |
| PROMPT_TEMPLATE.format( | |
| persona_description=persona_desc, | |
| world_description=world_desc, | |
| ), | |
| max_tokens=1024, | |
| ) | |
| character2 = safe_json_parse(raw2) | |
| if character2: | |
| return character2 | |
| # If both fail, return error and raw outputs for debugging | |
| return { | |
| "error": "LLM did not return valid JSON after 2 attempts.", | |
| "first_raw": raw, | |
| "second_raw": raw2, | |
| "tip": "Check your LLM prompt and output. Try regenerating.", | |
| } | |
| # 7. Gradio UI | |
| DESCRIPTION = """ | |
| * Generates a JSON character sheet from a world + persona. | |
| * Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback. | |
| * Personas sampled from **FinePersonas-Lite**. | |
| Tip β Shuffle the world then persona for rapid inspiration. | |
| """ | |
| with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo: | |
| gr.Markdown("<h1 style='text-align:center'>π§ββοΈ Character Generator</h1>") | |
| gr.Markdown(DESCRIPTION.strip()) | |
| with gr.Row(): | |
| world_tb = gr.Textbox(label="World Description", lines=10, scale=4) | |
| persona_tb = gr.Textbox( | |
| label="Persona Description", value=random_persona(), lines=10, scale=1 | |
| ) | |
| with gr.Row(): | |
| btn_world = gr.Button("π Random World", variant="secondary") | |
| btn_generate = gr.Button("β¨ Generate Character", variant="primary", scale=5) | |
| btn_persona = gr.Button("π Random Persona", variant="secondary") | |
| with gr.Row(): | |
| img_out = gr.Image(label="Character Image") | |
| json_out = gr.JSON(label="Character Description") | |
| btn_generate.click( | |
| generate_character, [world_tb, persona_tb], [json_out] | |
| ).then( | |
| infer_flux, [json_out], [img_out] | |
| ) | |
| btn_world.click(random_world, outputs=[world_tb]) | |
| btn_persona.click(random_persona, outputs=[persona_tb]) | |
| demo.queue().launch(share=False) | |