Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| import gradio as gr, json, os, random, torch, spaces | |
| from diffusers import StableDiffusionPipeline, AutoencoderKL | |
| from gradio_client import Client | |
| from live_preview_helpers import ( | |
| flux_pipe_call_that_returns_an_iterable_of_images as flux_iter, | |
| ) | |
| # Device and dtype selection | |
| USE_CUDA = torch.cuda.is_available() | |
| DTYPE = torch.float16 if USE_CUDA else torch.float32 | |
| device = torch.device("cuda" if USE_CUDA else "cpu") | |
| # PUBLIC Stable Diffusion pipeline setup | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", torch_dtype=DTYPE | |
| ).to(device) | |
| good_vae = AutoencoderKL.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", subfolder="vae", torch_dtype=DTYPE | |
| ).to(device) | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe) | |
| # LLM client config (Zephyr or Gemma fallback) | |
| LLM_SPACES = [ | |
| "https://huggingfaceh4-zephyr-chat.hf.space", | |
| "huggingface-projects/gemma-2-9b-it", | |
| ] | |
| def first_live_space(space_ids): | |
| for sid in space_ids: | |
| try: | |
| print(f"[info] probing {sid}") | |
| c = Client(sid, hf_token=os.getenv("HF_TOKEN")) | |
| _ = c.predict("ping", 8, api_name="/chat") | |
| print(f"[info] using {sid}") | |
| return c | |
| except Exception as e: | |
| print(f"[warn] {sid} unusable β {e}") | |
| print("[warn] No live chat Space found; falling back to local responses.") | |
| return None | |
| llm_client = first_live_space(LLM_SPACES) | |
| CHAT_API = "/chat" | |
| def call_llm(prompt, max_tokens=256, temperature=0.6, top_p=0.9): | |
| if llm_client is not None: | |
| try: | |
| return llm_client.predict( | |
| prompt, max_tokens, temperature, top_p, api_name=CHAT_API | |
| ).strip() | |
| except Exception as exc: | |
| print(f"[error] LLM failure β {exc}") | |
| # Local fallback if no LLM API available | |
| print("[warn] Returning local fallback response.") | |
| return "No LLM API available. Please enter your own text." | |
| # Datasets and prompt templates | |
| ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train") | |
| def random_persona(): | |
| return ds[random.randint(0, len(ds) - 1)]["persona"] | |
| WORLD_PROMPT = ( | |
| "Invent a short, unique and vivid world description. Respond with the description only." | |
| ) | |
| def random_world(): | |
| return call_llm(WORLD_PROMPT, max_tokens=120) | |
| PROMPT_TEMPLATE = """Generate a character with this persona description: | |
| {persona_description} | |
| In a world with this description: | |
| {world_description} | |
| Write the character in JSON with keys: | |
| name, background, appearance, personality, skills_and_abilities, goals, conflicts, backstory, current_situation, spoken_lines (list of strings). | |
| Respond with JSON only (no markdown).""" | |
| def generate_character(world_desc, persona_desc, progress=gr.Progress(track_tqdm=True)): | |
| raw = call_llm( | |
| PROMPT_TEMPLATE.format( | |
| persona_description=persona_desc, | |
| world_description=world_desc, | |
| ), | |
| max_tokens=1024, | |
| ) | |
| try: | |
| return json.loads(raw) | |
| except Exception: | |
| # Fallback for user input/manual override | |
| return {"name": "Unnamed", "appearance": "Manual entry required."} | |
| CHAIN_PROMPT_TEMPLATE = """ | |
| You are crafting an interconnected character ensemble for a shared world. | |
| [WORLD]: | |
| {world_description} | |
| [PRIMARY PERSONA]: | |
| {primary_persona} | |
| Generate 3 interconnected character JSON profiles: | |
| 1. PROTAGONIST: A compelling lead based on the given persona | |
| 2. ALLY or FOIL: A character closely linked to the protagonist, either as support or contrast | |
| 3. NEMESIS: A rival or antagonist with clashing philosophy, history, or goals | |
| Each character must include: | |
| - name | |
| - role (protagonist, ally, nemesis) | |
| - appearance | |
| - background | |
| - personality | |
| - shared_history (relation to other character) | |
| - goals | |
| - conflicts | |
| - current_situation | |
| - spoken_lines (3 lines of dialogue) | |
| Respond with pure JSON array. | |
| """ | |
| def generate_connected_characters(world_desc, persona_desc, progress=gr.Progress(track_tqdm=True)): | |
| raw = call_llm( | |
| CHAIN_PROMPT_TEMPLATE.format( | |
| world_description=world_desc, | |
| primary_persona=persona_desc | |
| ), | |
| max_tokens=2048 | |
| ) | |
| try: | |
| return json.loads(raw) | |
| except Exception: | |
| # Fallback for user input/manual override | |
| return [{"name": "Unnamed Protagonist", "role": "protagonist"}, | |
| {"name": "Unnamed Ally", "role": "ally"}, | |
| {"name": "Unnamed Nemesis", "role": "nemesis"}] | |
| # Gradio UI | |
| DESCRIPTION = """ | |
| * Generates a trio of connected character sheets for a world + persona. | |
| * Images via **Stable Diffusion**; story text via Zephyr-chat or Gemma fallback. | |
| * Personas sampled from **FinePersonas-Lite**. | |
| Tip β Shuffle the world then persona for rapid inspiration. | |
| """ | |
| with gr.Blocks(title="Connected Character Chain Generator", theme="Nymbo/Nymbo_Theme") as demo: | |
| gr.Markdown("<h1 style='text-align:center'>𧬠Connected Character Chain Generator</h1>") | |
| gr.Markdown(DESCRIPTION.strip()) | |
| with gr.Row(): | |
| world_tb = gr.Textbox(label="World Description", lines=10, scale=4) | |
| persona_tb = gr.Textbox( | |
| label="Persona Description", value=random_persona(), lines=10, scale=1 | |
| ) | |
| with gr.Row(): | |
| btn_world = gr.Button("π Random World", variant="secondary") | |
| btn_generate = gr.Button("β¨ Generate Character", variant="primary", scale=5) | |
| btn_persona = gr.Button("π Random Persona", variant="secondary") | |
| btn_chain = gr.Button("𧬠Chain Characters", variant="secondary") | |
| with gr.Row(): | |
| img_out = gr.Image(label="Character Image") | |
| json_out = gr.JSON(label="Character Description") | |
| chained_out = gr.JSON(label="Connected Characters (Protagonist, Ally, Nemesis)") | |
| def sd_image_from_character(character): | |
| # Use appearance or fallback if needed | |
| prompt = character.get("appearance", "A unique portrait, digital art, fantasy character, 4k") | |
| return next(pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt, | |
| guidance_scale=7.5, | |
| num_inference_steps=25, | |
| width=512, | |
| height=512, | |
| output_type="pil" | |
| )) | |
| btn_generate.click( | |
| generate_character, [world_tb, persona_tb], [json_out] | |
| ).then( | |
| sd_image_from_character, [json_out], [img_out] | |
| ) | |
| btn_chain.click( | |
| generate_connected_characters, [world_tb, persona_tb], [chained_out] | |
| ) | |
| btn_world.click(random_world, outputs=[world_tb]) | |
| btn_persona.click(random_persona, outputs=[persona_tb]) | |
| demo.queue().launch(share=True) | |