Jensin commited on
Commit
2fa993f
·
1 Parent(s): f279e30

updated app.py requirements.txt and live_preview_helpers

Browse files
Files changed (3) hide show
  1. app.py +25 -18
  2. live_preview_helpers.py +14 -20
  3. requirements.txt +10 -6
app.py CHANGED
@@ -1,26 +1,29 @@
1
  from datasets import load_dataset
2
  import gradio as gr, json, os, random, torch, spaces
3
- from diffusers import FluxPipeline, AutoencoderKL
4
  from gradio_client import Client
5
  from live_preview_helpers import (
6
  flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
7
  )
8
 
 
9
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
- pipe = FluxPipeline.from_pretrained(
11
- "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
 
 
12
  ).to(device)
13
  good_vae = AutoencoderKL.from_pretrained(
14
- "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
15
  ).to(device)
16
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)
17
 
 
18
  LLM_SPACES = [
19
  "https://huggingfaceh4-zephyr-chat.hf.space",
20
  "huggingface-projects/gemma-2-9b-it",
21
  ]
22
-
23
- def first_live_space(space_ids: list[str]) -> Client:
24
  for sid in space_ids:
25
  try:
26
  print(f"[info] probing {sid}")
@@ -31,11 +34,9 @@ def first_live_space(space_ids: list[str]) -> Client:
31
  except Exception as e:
32
  print(f"[warn] {sid} unusable → {e}")
33
  raise RuntimeError("No live chat Space found!")
34
-
35
  llm_client = first_live_space(LLM_SPACES)
36
- CHAT_API = "/chat"
37
-
38
- def call_llm(prompt: str, max_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9) -> str:
39
  try:
40
  return llm_client.predict(
41
  prompt, max_tokens, temperature, top_p, api_name=CHAT_API
@@ -46,16 +47,14 @@ def call_llm(prompt: str, max_tokens: int = 256, temperature: float = 0.6, top_p
46
 
47
  # Datasets and prompt templates
48
  ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
49
- def random_persona() -> str:
50
  return ds[random.randint(0, len(ds) - 1)]["persona"]
51
-
52
  WORLD_PROMPT = (
53
  "Invent a short, unique and vivid world description. Respond with the description only."
54
  )
55
- def random_world() -> str:
56
  return call_llm(WORLD_PROMPT, max_tokens=120)
57
 
58
- # Standard single character prompt (optional)
59
  PROMPT_TEMPLATE = """Generate a character with this persona description:
60
  {persona_description}
61
  In a world with this description:
@@ -64,7 +63,7 @@ Write the character in JSON with keys:
64
  name, background, appearance, personality, skills_and_abilities, goals, conflicts, backstory, current_situation, spoken_lines (list of strings).
65
  Respond with JSON only (no markdown)."""
66
 
67
- def generate_character(world_desc: str, persona_desc: str, progress=gr.Progress(track_tqdm=True)):
68
  raw = call_llm(
69
  PROMPT_TEMPLATE.format(
70
  persona_description=persona_desc,
@@ -113,7 +112,7 @@ Each character must include:
113
  Respond with pure JSON array.
114
  """
115
 
116
- def generate_connected_characters(world_desc: str, persona_desc: str, progress=gr.Progress(track_tqdm=True)):
117
  raw = call_llm(
118
  CHAIN_PROMPT_TEMPLATE.format(
119
  world_description=world_desc,
@@ -136,7 +135,7 @@ def generate_connected_characters(world_desc: str, persona_desc: str, progress=g
136
  # Gradio UI
137
  DESCRIPTION = """
138
  * Generates a trio of connected character sheets for a world + persona.
139
- * Images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback.
140
  * Personas sampled from **FinePersonas-Lite**.
141
  Tip → Shuffle the world then persona for rapid inspiration.
142
  """
@@ -162,10 +161,18 @@ with gr.Blocks(title="Connected Character Chain Generator", theme="Nymbo/Nymbo_T
162
  json_out = gr.JSON(label="Character Description")
163
  chained_out = gr.JSON(label="Connected Characters (Protagonist, Ally, Nemesis)")
164
 
 
 
 
 
 
 
 
 
165
  btn_generate.click(
166
  generate_character, [world_tb, persona_tb], [json_out]
167
  ).then(
168
- lambda character: infer_flux(character), [json_out], [img_out]
169
  )
170
  btn_chain.click(
171
  generate_connected_characters, [world_tb, persona_tb], [chained_out]
 
1
  from datasets import load_dataset
2
  import gradio as gr, json, os, random, torch, spaces
3
+ from diffusers import StableDiffusionPipeline, AutoencoderKL
4
  from gradio_client import Client
5
  from live_preview_helpers import (
6
  flux_pipe_call_that_returns_an_iterable_of_images as flux_iter,
7
  )
8
 
9
+ # Device selection
10
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ # PUBLIC Stable Diffusion pipeline setup
13
+ pipe = StableDiffusionPipeline.from_pretrained(
14
+ "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
15
  ).to(device)
16
  good_vae = AutoencoderKL.from_pretrained(
17
+ "runwayml/stable-diffusion-v1-5", subfolder="vae", torch_dtype=torch.float16
18
  ).to(device)
19
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe)
20
 
21
+ # LLM client config (Zephyr or Gemma fallback)
22
  LLM_SPACES = [
23
  "https://huggingfaceh4-zephyr-chat.hf.space",
24
  "huggingface-projects/gemma-2-9b-it",
25
  ]
26
+ def first_live_space(space_ids):
 
27
  for sid in space_ids:
28
  try:
29
  print(f"[info] probing {sid}")
 
34
  except Exception as e:
35
  print(f"[warn] {sid} unusable → {e}")
36
  raise RuntimeError("No live chat Space found!")
 
37
  llm_client = first_live_space(LLM_SPACES)
38
+ CHAT_API = "/chat"
39
+ def call_llm(prompt, max_tokens=256, temperature=0.6, top_p=0.9):
 
40
  try:
41
  return llm_client.predict(
42
  prompt, max_tokens, temperature, top_p, api_name=CHAT_API
 
47
 
48
  # Datasets and prompt templates
49
  ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
50
+ def random_persona():
51
  return ds[random.randint(0, len(ds) - 1)]["persona"]
 
52
  WORLD_PROMPT = (
53
  "Invent a short, unique and vivid world description. Respond with the description only."
54
  )
55
+ def random_world():
56
  return call_llm(WORLD_PROMPT, max_tokens=120)
57
 
 
58
  PROMPT_TEMPLATE = """Generate a character with this persona description:
59
  {persona_description}
60
  In a world with this description:
 
63
  name, background, appearance, personality, skills_and_abilities, goals, conflicts, backstory, current_situation, spoken_lines (list of strings).
64
  Respond with JSON only (no markdown)."""
65
 
66
+ def generate_character(world_desc, persona_desc, progress=gr.Progress(track_tqdm=True)):
67
  raw = call_llm(
68
  PROMPT_TEMPLATE.format(
69
  persona_description=persona_desc,
 
112
  Respond with pure JSON array.
113
  """
114
 
115
+ def generate_connected_characters(world_desc, persona_desc, progress=gr.Progress(track_tqdm=True)):
116
  raw = call_llm(
117
  CHAIN_PROMPT_TEMPLATE.format(
118
  world_description=world_desc,
 
135
  # Gradio UI
136
  DESCRIPTION = """
137
  * Generates a trio of connected character sheets for a world + persona.
138
+ * Images via **Stable Diffusion**; story text via Zephyr-chat or Gemma fallback.
139
  * Personas sampled from **FinePersonas-Lite**.
140
  Tip → Shuffle the world then persona for rapid inspiration.
141
  """
 
161
  json_out = gr.JSON(label="Character Description")
162
  chained_out = gr.JSON(label="Connected Characters (Protagonist, Ally, Nemesis)")
163
 
164
+ jls_extract_var = lambda character: next(pipe.flux_pipe_call_that_returns_an_iterable_of_images(
165
+ prompt=character["appearance"],
166
+ guidance_scale=7.5,
167
+ num_inference_steps=25,
168
+ width=512,
169
+ height=512,
170
+ output_type="pil"
171
+ ))
172
  btn_generate.click(
173
  generate_character, [world_tb, persona_tb], [json_out]
174
  ).then(
175
+ jls_extract_var, [json_out], [img_out]
176
  )
177
  btn_chain.click(
178
  generate_connected_characters, [world_tb, persona_tb], [chained_out]
live_preview_helpers.py CHANGED
@@ -3,26 +3,23 @@
3
  import torch
4
  from typing import Iterator
5
 
 
 
6
  def flux_pipe_call_that_returns_an_iterable_of_images(
7
  self,
8
- prompt: str,
9
- guidance_scale: float = 3.5,
10
- num_inference_steps: int = 28,
11
- width: int = 1024,
12
- height: int = 1024,
13
  generator=None,
14
- output_type: str = "pil",
15
- good_vae=None,
16
- ) -> Iterator:
17
  """
18
- Streams an iterable of images as generated by the FLUX pipeline, for use with Gradio's live preview.
19
  """
20
- # You may use your actual FLUX pipeline API if different.
21
- pipe = self # usually the FLUX pipeline instance
22
-
23
- if generator is None:
24
- generator = torch.Generator(device="cpu").manual_seed(0)
25
- images = pipe(
26
  prompt=prompt,
27
  guidance_scale=guidance_scale,
28
  num_inference_steps=num_inference_steps,
@@ -30,8 +27,5 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
30
  height=height,
31
  generator=generator,
32
  output_type=output_type,
33
- vae=good_vae,
34
- ).images
35
-
36
- for img in images:
37
- yield img
 
3
  import torch
4
  from typing import Iterator
5
 
6
+ # live_preview_helpers.py
7
+
8
  def flux_pipe_call_that_returns_an_iterable_of_images(
9
  self,
10
+ prompt,
11
+ guidance_scale=7.5,
12
+ num_inference_steps=20,
13
+ width=512,
14
+ height=512,
15
  generator=None,
16
+ output_type="pil",
17
+ good_vae=None
18
+ ):
19
  """
20
+ For StableDiffusion: yields a single image for now.
21
  """
22
+ image = self(
 
 
 
 
 
23
  prompt=prompt,
24
  guidance_scale=guidance_scale,
25
  num_inference_steps=num_inference_steps,
 
27
  height=height,
28
  generator=generator,
29
  output_type=output_type,
30
+ ).images[0]
31
+ yield image
 
 
 
requirements.txt CHANGED
@@ -1,6 +1,10 @@
1
- gradio
2
- torch
3
- diffusers
4
- datasets
5
- transformers
6
- Pillow
 
 
 
 
 
1
+ gradio>=4.21.0
2
+ gradio_client>=0.4.0
3
+ transformers>=4.39.0
4
+ datasets>=2.18.0
5
+ huggingface_hub>=0.23.0
6
+ accelerate>=0.27.0
7
+ diffusers>=0.27.0
8
+ torch>=2.1.0
9
+ Pillow>=10.0.0
10
+ spaces>=0.26.0