Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,66 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
-
|
| 4 |
-
from huggingface_hub.utils import HfHubHTTPError
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
MAX_HISTORY_ENTRIES = 10 # cap history length to prevent context overflow
|
| 12 |
|
| 13 |
-
# Default system prompt
|
| 14 |
DEFAULT_SYSTEM = (
|
| 15 |
"You are an expert credit analyst. Your role is to analyze a customer's "
|
| 16 |
"credit data and generate a concise summary of the most important "
|
| 17 |
"positive and negative changes."
|
| 18 |
)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
ensures max_tokens is clipped to context window limits.
|
| 33 |
-
Yields streamed token deltas or an error message if the call fails.
|
| 34 |
-
"""
|
| 35 |
-
# Initialize a new client for this request (avoids lock contention)
|
| 36 |
-
client = InferenceClient(base_url=ENDPOINT)
|
| 37 |
-
|
| 38 |
-
# Strip system_message once
|
| 39 |
-
sys_content = system_message.strip()
|
| 40 |
-
|
| 41 |
-
# Trim history to the most recent entries
|
| 42 |
-
trimmed = history[-MAX_HISTORY_ENTRIES:]
|
| 43 |
-
|
| 44 |
-
# Build messages list, starting with system prompt
|
| 45 |
-
messages = [{
|
| 46 |
-
"role": "system",
|
| 47 |
-
"content": sys_content if sys_content else DEFAULT_SYSTEM
|
| 48 |
-
}]
|
| 49 |
-
|
| 50 |
-
# Append trimmed, non-empty history entries
|
| 51 |
-
for usr, bot in trimmed:
|
| 52 |
-
usr_text = usr.strip()
|
| 53 |
-
bot_text = bot.strip()
|
| 54 |
-
if usr_text:
|
| 55 |
-
messages.append({"role": "user", "content": usr_text})
|
| 56 |
-
if bot_text:
|
| 57 |
-
messages.append({"role": "assistant", "content": bot_text})
|
| 58 |
-
|
| 59 |
-
# Append current user message
|
| 60 |
-
um_text = user_message.strip()
|
| 61 |
-
if um_text:
|
| 62 |
-
messages.append({"role": "user", "content": um_text})
|
| 63 |
-
|
| 64 |
-
# Clip max_tokens to fit within context
|
| 65 |
-
allowed = max(0, CONTEXT_WINDOW - RESERVED_TOKENS)
|
| 66 |
max_tok = min(max_tokens, allowed)
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
# Stream
|
| 69 |
try:
|
| 70 |
for chunk in client.chat_completion(
|
|
|
|
| 71 |
messages=messages,
|
| 72 |
max_tokens=max_tok,
|
| 73 |
temperature=temperature,
|
|
@@ -77,30 +70,101 @@ def respond(
|
|
| 77 |
delta = chunk.choices[0].delta.get("content", "")
|
| 78 |
if delta:
|
| 79 |
yield delta
|
| 80 |
-
except
|
| 81 |
yield f"[Error] Inference request failed: {e}"
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
description="Ask about customer credit profile changes.",
|
| 90 |
-
additional_inputs=[
|
| 91 |
-
gr.Textbox(value=DEFAULT_SYSTEM, label="System message"),
|
| 92 |
-
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
| 93 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 94 |
-
gr.Slider(
|
| 95 |
-
minimum=0.1,
|
| 96 |
-
maximum=1.0,
|
| 97 |
-
value=0.9,
|
| 98 |
-
step=0.05,
|
| 99 |
-
label="Top-p (nucleus sampling)",
|
| 100 |
-
),
|
| 101 |
-
],
|
| 102 |
-
type='messages'
|
| 103 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
if __name__ == "__main__":
|
| 106 |
-
|
|
|
|
|
|
| 1 |
+
# File: app.py
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Attempt Gradio import; disable UI if ssl is unavailable
|
| 5 |
+
try:
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import ssl # noqa: F401
|
| 8 |
+
USE_GRADIO = True
|
| 9 |
+
except ModuleNotFoundError as e:
|
| 10 |
+
if 'ssl' in str(e):
|
| 11 |
+
USE_GRADIO = False
|
| 12 |
+
print("Warning: ssl module unavailable; Gradio UI disabled.")
|
| 13 |
+
else:
|
| 14 |
+
raise
|
| 15 |
+
|
| 16 |
from huggingface_hub import InferenceClient
|
| 17 |
+
import requests # for HTTP error handling
|
|
|
|
| 18 |
|
| 19 |
+
MODEL_ID = "Dushyant4342/ft-llama3-8b-credit-analyst"
|
| 20 |
+
ENDPOINT = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
| 21 |
+
CONTEXT_WINDOW = 4096 # model context size
|
| 22 |
+
RESERVED_TOKENS = 512 # space reserved for generation
|
| 23 |
+
MAX_HISTORY_ENTRIES = 10 # context truncation length
|
|
|
|
| 24 |
|
|
|
|
| 25 |
DEFAULT_SYSTEM = (
|
| 26 |
"You are an expert credit analyst. Your role is to analyze a customer's "
|
| 27 |
"credit data and generate a concise summary of the most important "
|
| 28 |
"positive and negative changes."
|
| 29 |
)
|
| 30 |
|
| 31 |
+
_client = None
|
| 32 |
+
|
| 33 |
+
def get_client():
|
| 34 |
+
"""Singleton InferenceClient to reduce instantiation overhead."""
|
| 35 |
+
global _client
|
| 36 |
+
if _client is None:
|
| 37 |
+
_client = InferenceClient(base_url=ENDPOINT)
|
| 38 |
+
return _client
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def respond(user_message, history, system_message, max_tokens, temperature, top_p):
|
| 42 |
+
client = get_client()
|
| 43 |
|
| 44 |
+
# Build system + history + user messages
|
| 45 |
+
sys_content = system_message.strip() or DEFAULT_SYSTEM
|
| 46 |
+
messages = [{"role": "system", "content": sys_content}]
|
| 47 |
+
for usr, bot in history[-MAX_HISTORY_ENTRIES:]:
|
| 48 |
+
if usr.strip(): messages.append({"role": "user", "content": usr.strip()})
|
| 49 |
+
if bot.strip(): messages.append({"role": "assistant", "content": bot.strip()})
|
| 50 |
+
if user_message.strip():
|
| 51 |
+
messages.append({"role": "user", "content": user_message.strip()})
|
| 52 |
+
|
| 53 |
+
# Token budget guard
|
| 54 |
+
allowed = CONTEXT_WINDOW - RESERVED_TOKENS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
max_tok = min(max_tokens, allowed)
|
| 56 |
+
if max_tok <= 0:
|
| 57 |
+
yield "[Error] Token budget exhausted."
|
| 58 |
+
return
|
| 59 |
|
| 60 |
+
# Stream response, catch network errors
|
| 61 |
try:
|
| 62 |
for chunk in client.chat_completion(
|
| 63 |
+
model=MODEL_ID,
|
| 64 |
messages=messages,
|
| 65 |
max_tokens=max_tok,
|
| 66 |
temperature=temperature,
|
|
|
|
| 70 |
delta = chunk.choices[0].delta.get("content", "")
|
| 71 |
if delta:
|
| 72 |
yield delta
|
| 73 |
+
except requests.exceptions.RequestException as e:
|
| 74 |
yield f"[Error] Inference request failed: {e}"
|
| 75 |
|
| 76 |
+
if USE_GRADIO:
|
| 77 |
+
demo = gr.ChatInterface(
|
| 78 |
+
fn=respond,
|
| 79 |
+
title="Credit Analyst Bot",
|
| 80 |
+
description="Ask about customer credit profile changes.",
|
| 81 |
+
additional_inputs=[
|
| 82 |
+
gr.Textbox(value=DEFAULT_SYSTEM, label="System message"),
|
| 83 |
+
gr.Slider(1, CONTEXT_WINDOW, value=512, step=1, label="Max new tokens"),
|
| 84 |
+
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
| 85 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
| 86 |
+
],
|
| 87 |
+
type="messages"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo.launch()
|
| 92 |
+
else:
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
print("Gradio UI disabled. Use local_inference.py for direct calls.")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# File: local_inference.py
|
| 98 |
+
import torch
|
| 99 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 100 |
+
|
| 101 |
+
MODEL_ID = "Dushyant4342/ft-llama3-8b-credit-analyst"
|
| 102 |
|
| 103 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 104 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 105 |
+
MODEL_ID,
|
| 106 |
+
torch_dtype=torch.bfloat16,
|
| 107 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
+
model.eval()
|
| 110 |
+
|
| 111 |
+
def summarize_credit(customer_data: str, user_command: str,
|
| 112 |
+
max_new_tokens=128, temperature=0.6, top_p=0.9):
|
| 113 |
+
"""Return a concise credit summary given structured data and a user command."""
|
| 114 |
+
system_prompt = DEFAULT_SYSTEM
|
| 115 |
+
messages = [
|
| 116 |
+
{"role": "system", "content": system_prompt},
|
| 117 |
+
{"role": "user", "content": f"{user_command}\n\n--- DATA ---\n{customer_data}"}
|
| 118 |
+
]
|
| 119 |
+
prompt = tokenizer.apply_chat_template(
|
| 120 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 121 |
+
)
|
| 122 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 123 |
+
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
outputs = model.generate(
|
| 126 |
+
**inputs,
|
| 127 |
+
max_new_tokens=max_new_tokens,
|
| 128 |
+
do_sample=True,
|
| 129 |
+
temperature=temperature,
|
| 130 |
+
top_p=top_p,
|
| 131 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 132 |
+
)
|
| 133 |
+
# Decode only the generated part
|
| 134 |
+
gen = outputs[0][inputs["input_ids"].shape[-1]:]
|
| 135 |
+
return tokenizer.decode(gen, skip_special_tokens=True)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# File: tests/test_credit_analyst.py
|
| 139 |
+
import unittest
|
| 140 |
+
from local_inference import summarize_credit
|
| 141 |
+
|
| 142 |
+
class TestCreditAnalystSummarization(unittest.TestCase):
|
| 143 |
+
def test_basic_output_type(self):
|
| 144 |
+
data = (
|
| 145 |
+
"--- Credit Profile Report ---\n"
|
| 146 |
+
"Risk Score: 600 (was 650)"
|
| 147 |
+
)
|
| 148 |
+
cmd = "Summarize changes in one sentence."
|
| 149 |
+
output = summarize_credit(data, cmd, max_new_tokens=32, temperature=0.0, top_p=1.0)
|
| 150 |
+
self.assertIsInstance(output, str)
|
| 151 |
+
self.assertTrue(len(output) > 0)
|
| 152 |
+
|
| 153 |
+
def test_empty_data(self):
|
| 154 |
+
data = ""
|
| 155 |
+
cmd = "Summarize changes."
|
| 156 |
+
output = summarize_credit(data, cmd, max_new_tokens=16, temperature=0.0, top_p=1.0)
|
| 157 |
+
self.assertIsInstance(output, str)
|
| 158 |
+
|
| 159 |
+
def test_token_budget_exhaustion(self):
|
| 160 |
+
# Simulate a scenario where max_tokens <= RESERVED_TOKENS
|
| 161 |
+
# This uses the respond() logic; here we simply ensure summarize_credit doesn't error
|
| 162 |
+
data = "--- Credit Profile Report ---"
|
| 163 |
+
cmd = "Summarize."
|
| 164 |
+
# Pass a very low max_new_tokens to test generate with zero budget
|
| 165 |
+
output = summarize_credit(data, cmd, max_new_tokens=0, temperature=0.0, top_p=1.0)
|
| 166 |
+
self.assertIsInstance(output, str)
|
| 167 |
|
| 168 |
if __name__ == "__main__":
|
| 169 |
+
unittest.main()
|
| 170 |
+
|