Spaces:
Paused
Paused
| import gradio as gr | |
| import re | |
| from transformers import AutoTokenizer, AutoModel | |
| MODEL_NAME = "silver/chatglm-6b-int4-slim" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True).float() | |
| def summarize(transcript, sentence_count): | |
| history = [] | |
| prompt = f"""视频脚本:{transcript}。我希望你作为一名专业的视频内容编辑,帮我用中文总结视频脚本的内容精华。请先用一句简短的话总结视频梗概。然后再请你将视频字幕文本进行总结(字幕中可能有错别字,如果你发现了错别字请改正)。请你以无序列表的方式返回,请注意不要超过{sentence_count}条哦,确保所有的句子都足够精简,清晰完整,祝你好运!""" | |
| response, history = model.chat(tokenizer, prompt, history=history) | |
| return response | |
| demo = gr.Interface(fn = summarize, | |
| inputs = [gr.Textbox(lines=10, | |
| placeholder="Input something...", | |
| label='Text here !!'), | |
| gr.Slider(minimum=1, | |
| maximum=10, | |
| step=1, | |
| label='Sentence Count')], | |
| outputs = [gr.Textbox(lines=10, | |
| label="Summary")], | |
| title = "🎈 Summarizer 🎈") | |
| demo.launch() |