Spaces:
Running
Running
File size: 12,184 Bytes
5e93ca8 e255b36 5e93ca8 5cf4958 5e93ca8 5cf4958 5e93ca8 5cf4958 5e93ca8 5cf4958 947c0bc 5e93ca8 3d8edda 5e93ca8 947c0bc 3d8edda 947c0bc 5cf4958 5e93ca8 947c0bc 5e93ca8 0328538 5e93ca8 5cf4958 5e93ca8 5cf4958 5e93ca8 0328538 5e93ca8 5cf4958 5e93ca8 5cf4958 5e93ca8 de786d0 5e93ca8 5cf4958 883a145 0062f57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import os
from huggingface_hub import InferenceClient
import tempfile
import shutil
from pathlib import Path
# Initialize the client
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"),
bill_to="huggingface",
)
def text_to_video(prompt, duration=5, aspect_ratio="19:9", resolution="9020p", profile: gr.OAuthProfile | None = None):
"""Generate video from text prompt"""
try:
if profile is None:
return None, "β Click Sign in with Hugging Face button to use this app for free"
if not prompt or prompt.strip() == "":
return None, "Please enter a text prompt"
# Generate video from text
video = client.text_to_video(
prompt,
model="akhaliq/veo3.1-fast",
)
# Save the video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video)
video_path = tmp_file.name
return video_path, f"β
Video generated successfully from prompt: '{prompt[:50]}...'"
except Exception as e:
return None, f"β Error generating video: {str(e)}"
def image_to_video(image, prompt, duration=5, aspect_ratio="16:9", resolution="720p", profile: gr.OAuthProfile | None = None):
"""Generate video from image and prompt"""
try:
if profile is None:
return None, "β Click Sign in with Hugging Face button to use this app for free"
if image is None:
return None, "Please upload an image"
if not prompt or prompt.strip() == "":
return None, "Please enter a prompt describing the motion"
# Read the image file
if isinstance(image, str):
# If image is a file path
with open(image, "rb") as image_file:
input_image = image_file.read()
else:
# If image is already bytes or similar
import io
from PIL import Image as PILImage
# Convert to bytes if necessary
if isinstance(image, PILImage.Image):
buffer = io.BytesIO()
image.save(buffer, format='PNG')
input_image = buffer.getvalue()
else:
# Assume it's a numpy array or similar
pil_image = PILImage.fromarray(image)
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
input_image = buffer.getvalue()
# Generate video from image
video = client.image_to_video(
input_image,
prompt=prompt,
model="akhaliq/veo3.1-fast-image-to-video",
)
# Save the video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video)
video_path = tmp_file.name
return video_path, f"β
Video generated successfully with motion: '{prompt[:50]}...'"
except Exception as e:
return None, f"β Error generating video: {str(e)}"
def clear_text_tab():
"""Clear text-to-video tab"""
return "", None, ""
def clear_image_tab():
"""Clear image-to-video tab"""
return None, "", None, ""
# Custom CSS for better styling
custom_css = """
.container {
max-width: 1200px;
margin: auto;
}
.header-link {
text-decoration: none;
color: #2196F3;
font-weight: bold;
}
.header-link:hover {
text-decoration: underline;
}
.status-box {
padding: 10px;
border-radius: 5px;
margin-top: 10px;
}
.auth-warning {
color: #ff6b00;
font-weight: bold;
text-align: center;
margin: 1em 0;
padding: 1em;
background-color: #fff3e0;
border-radius: 5px;
}
.mobile-link-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 1.5em;
border-radius: 10px;
text-align: center;
margin: 1em 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.mobile-link {
color: white !important;
font-size: 1.2em;
font-weight: bold;
text-decoration: none;
display: inline-block;
padding: 0.5em 1.5em;
background: rgba(255, 255, 255, 0.2);
border-radius: 25px;
transition: all 0.3s ease;
}
.mobile-link:hover {
background: rgba(255, 255, 255, 0.3);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.mobile-text {
color: white;
margin-bottom: 0.5em;
font-size: 1.1em;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator") as demo:
gr.Markdown(
"""
# π¬ AI Video Generator
### Generate stunning videos from text or animate your images with AI
#### Powered by Sora 3.1 Fast Model | [Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
# Add mobile link section
gr.HTML(
"""
<div class="mobile-link-container">
<div class="mobile-text">π± On mobile? Use the optimized version:</div>
<a href="sora3" target="_blank" class="mobile-link">
π Open Mobile Version
</a>
</div>
"""
)
gr.HTML(
"""
<div class="auth-warning">
β οΈ You must Sign in with Hugging Face using the button below to use this app.
</div>
"""
)
# Add login button - required for OAuth
gr.LoginButton()
with gr.Tabs() as tabs:
# Text-to-Video Tab
with gr.Tab("π Text to Video", id=0):
gr.Markdown("### Transform your text descriptions into dynamic videos")
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe the video you want to create... (e.g., 'A young man walking on the street during sunset')",
lines=4,
max_lines=6
)
with gr.Row():
text_generate_btn = gr.Button("π¬ Generate Video", variant="primary", scale=2)
text_clear_btn = gr.ClearButton(value="ποΈ Clear", scale=1)
text_status = gr.Textbox(
label="Status",
interactive=False,
visible=True,
elem_classes=["status-box"]
)
with gr.Column(scale=1):
text_video_output = gr.Video(
label="Generated Video",
autoplay=True,
show_download_button=True,
height=400
)
# Examples for text-to-video
gr.Examples(
examples=[
["A serene beach at sunset with gentle waves"],
["A bustling city street with neon lights at night"],
["A majestic eagle soaring through mountain peaks"],
["An astronaut floating in space near the International Space Station"],
["Cherry blossoms falling in slow motion in a Japanese garden"],
],
inputs=text_prompt,
label="Example Prompts"
)
# Image-to-Video Tab
with gr.Tab("πΌοΈ Image to Video", id=1):
gr.Markdown("### Bring your static images to life with motion")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload Image",
type="pil",
height=300
)
image_prompt = gr.Textbox(
label="Motion Prompt",
placeholder="Describe how the image should move... (e.g., 'The cat starts to dance')",
lines=3,
max_lines=5
)
with gr.Row():
image_generate_btn = gr.Button("π¬ Animate Image", variant="primary", scale=2)
image_clear_btn = gr.ClearButton(value="ποΈ Clear", scale=1)
image_status = gr.Textbox(
label="Status",
interactive=False,
visible=True,
elem_classes=["status-box"]
)
with gr.Column(scale=1):
image_video_output = gr.Video(
label="Generated Video",
autoplay=True,
show_download_button=True,
height=400
)
# Examples for image-to-video
gr.Examples(
examples=[
[None, "The person starts walking forward"],
[None, "The animal begins to run"],
[None, "Camera slowly zooms in while the subject smiles"],
[None, "The flowers sway gently in the breeze"],
[None, "The clouds move across the sky in time-lapse"],
],
inputs=[image_input, image_prompt],
label="Example Motion Prompts"
)
# How to Use section
with gr.Accordion("π How to Use", open=False):
gr.Markdown(
"""
### Text to Video:
1. Enter a detailed description of the video you want to create
2. Optionally adjust advanced settings (duration, aspect ratio, resolution)
3. Click "Generate Video" and wait for the AI to create your video
4. Download or preview your generated video
### Image to Video:
1. Upload an image you want to animate
2. Describe the motion or action you want to add to the image
3. Optionally adjust advanced settings
4. Click "Animate Image" to bring your image to life
5. Download or preview your animated video
### Tips for Better Results:
- Be specific and descriptive in your prompts
- For image-to-video, describe natural motions that fit the image
- Use high-quality input images for better results
- Experiment with different prompts to get the desired effect
### Mobile Users:
- For the best mobile experience, use the optimized version at: https://akhaliq-veo3-1-fast.hf.space
"""
)
# Event handlers
text_generate_btn.click(
fn=text_to_video,
inputs=[text_prompt],
outputs=[text_video_output, text_status],
show_progress="full",
queue=False,
api_name=False,
show_api=False
)
text_clear_btn.click(
fn=clear_text_tab,
inputs=[],
outputs=[text_prompt, text_video_output, text_status],
queue=False
)
image_generate_btn.click(
fn=image_to_video,
inputs=[image_input, image_prompt],
outputs=[image_video_output, image_status],
show_progress="full",
queue=False,
api_name=False,
show_api=False
)
image_clear_btn.click(
fn=clear_image_tab,
inputs=[],
outputs=[image_input, image_prompt, image_video_output, image_status],
queue=False
)
# Launch the app
if __name__ == "__main__":
demo.launch(
show_api=False,
share=False,
show_error=True,
enable_monitoring=False,
quiet=True,
ssr_mode=True
) |