Upload 3 files
Browse files- README.md +13 -12
- app.py +57 -0
- requirements.txt +10 -0
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Diffusers
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Diffusers LoRA test with quantization
|
| 3 |
+
emoji: 🙄
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, BitsAndBytesConfig
|
| 6 |
+
import os
|
| 7 |
+
import subprocess
|
| 8 |
+
#subprocess.run("pip list", shell=True)
|
| 9 |
+
#subprocess.run("diffusers-cli env", shell=True)
|
| 10 |
+
#from optimum.quanto import freeze, qfloat8, quantize
|
| 11 |
+
|
| 12 |
+
HF_TOKEN = os.getenv("HF_TOKEN", "")
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
flux_repo = "multimodalart/FLUX.1-dev2pro-full"
|
| 15 |
+
ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
|
| 16 |
+
transformer_gguf = FluxTransformer2DModel.from_single_file(ckpt_path, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
| 17 |
+
torch_dtype=torch.bfloat16, config=flux_repo, token=HF_TOKEN)
|
| 18 |
+
transformer = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", torch_dtype=torch.bfloat16, token=HF_TOKEN)
|
| 19 |
+
nf4_quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 20 |
+
transformer_nf4 = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", quantization_config=nf4_quantization_config,
|
| 21 |
+
torch_dtype=torch.bfloat16, token=HF_TOKEN)
|
| 22 |
+
pipe = FluxPipeline.from_pretrained(flux_repo, transformer=transformer, torch_dtype=torch.bfloat16, token=HF_TOKEN)
|
| 23 |
+
hyper_sd_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
|
| 24 |
+
|
| 25 |
+
@spaces.GPU(duration=70)
|
| 26 |
+
def infer(prompt: str, mode: str, is_lora: bool, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
+
global pipe
|
| 28 |
+
try:
|
| 29 |
+
pipe.unload_lora_weights()
|
| 30 |
+
if mode == "Default": pipe.transformer = transformer
|
| 31 |
+
elif mode == "GGUF": pipe.transformer = transformer_gguf
|
| 32 |
+
elif mode == "NF4": pipe.transformer = transformer_nf4
|
| 33 |
+
if is_lora:
|
| 34 |
+
pipe.load_lora_weights(hyper_sd_lora, adapter_name="hyper-sd")
|
| 35 |
+
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
| 36 |
+
steps = 8
|
| 37 |
+
else: steps = 28
|
| 38 |
+
pipe.to(device)
|
| 39 |
+
image = pipe(prompt, generator=torch.manual_seed(0), num_inference_steps=steps).images[0]
|
| 40 |
+
pipe.to("cpu")
|
| 41 |
+
return image
|
| 42 |
+
except Exception as e:
|
| 43 |
+
raise gr.Error(e)
|
| 44 |
+
|
| 45 |
+
with gr.Blocks() as demo:
|
| 46 |
+
with gr.Row():
|
| 47 |
+
with gr.Column():
|
| 48 |
+
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world", lines=1)
|
| 49 |
+
mode = gr.Radio(label="Mode", choices=["Default", "GGUF", "NF4"], value="Default")
|
| 50 |
+
is_lora = gr.Checkbox(label="Enable LoRA", value=True)
|
| 51 |
+
gen_btn = gr.Button("Generate Image")
|
| 52 |
+
with gr.Column():
|
| 53 |
+
result = gr.Image(label="Result Image")
|
| 54 |
+
|
| 55 |
+
gen_btn.click(infer, [prompt, mode, is_lora], [result])
|
| 56 |
+
|
| 57 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub
|
| 2 |
+
torch
|
| 3 |
+
diffusers
|
| 4 |
+
peft
|
| 5 |
+
transformers
|
| 6 |
+
accelerate
|
| 7 |
+
numpy<2
|
| 8 |
+
gguf
|
| 9 |
+
bitsandbytes
|
| 10 |
+
optimum-quanto
|