Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from huggingface_hub import login | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load the gated model | |
| #model_name = "RickyDeSkywalker/TheoremLlama" | |
| #model_name = "internlm/internlm2-math-plus-7b" | |
| #model_name = "deepseek-ai/DeepSeek-Prover-V1.5-RL" | |
| model_name = "unsloth/Llama-3.2-1B-Instruct" | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| #login(HF_TOKEN) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto").eval() | |
| # Function for generating Lean 4 code | |
| def generate_lean4_code(prompt: str): | |
| terminators = [tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
| tokenizer.convert_tokens_to_ids("<|reserved_special_token_26|>")] | |
| chat = [ | |
| {"role": "system", "content": "You are a Lean4 expert who can write good Lean4 code based on natural language mathematical theorem and proof"}, | |
| {"role": "user", "content": prompt}, | |
| ] | |
| input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(model.device) | |
| results = model.generate(input_ids, max_new_tokens=1024, eos_token_id=terminators, do_sample=True, temperature=0.85, top_p=0.9) | |
| result_str = tokenizer.decode(results[0], skip_special_tokens=True) | |
| return result_str | |
| # Gradio Interface | |
| title = "Lean 4 Code Generation with TheoremLlama" | |
| description = "Enter a natural language prompt to generate Lean 4 code." | |
| interface = gr.Interface( | |
| fn=generate_lean4_code, | |
| inputs=gr.Textbox( | |
| label="Prompt", | |
| placeholder="Prove that the sum of two even numbers is even.", | |
| lines=4 | |
| ), | |
| outputs=gr.Code(label="Generated Lean 4 Code"), # language="lean" unsupported in Gradio... | |
| title=title, | |
| description=description | |
| ) | |
| # Launch the Gradio app | |
| interface.queue().launch(ssr_mode=False) |