Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,22 +26,25 @@ BACKENDS = ['opencv', 'mtcnn', 'ssd', 'dlib']
|
|
| 26 |
SAVE_DIR = Path("/tmp/emotion_results")
|
| 27 |
SAVE_DIR.mkdir(exist_ok=True)
|
| 28 |
|
| 29 |
-
# Create
|
|
|
|
|
|
|
| 30 |
for emotion in EMOTION_MAP.keys():
|
| 31 |
-
(SAVE_DIR / emotion).mkdir(exist_ok=True)
|
|
|
|
| 32 |
|
| 33 |
# Log file setup
|
| 34 |
LOG_FILE = SAVE_DIR / "emotion_logs.csv"
|
| 35 |
if not LOG_FILE.exists():
|
| 36 |
with open(LOG_FILE, 'w', newline='') as f:
|
| 37 |
writer = csv.writer(f)
|
| 38 |
-
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "
|
| 39 |
|
| 40 |
-
def log_emotion(batch_no, emotion, confidence,
|
| 41 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 42 |
with open(LOG_FILE, 'a', newline='') as f:
|
| 43 |
writer = csv.writer(f)
|
| 44 |
-
writer.writerow([timestamp, batch_no, emotion, confidence,
|
| 45 |
|
| 46 |
def predict_emotion(batch_no: str, image):
|
| 47 |
if not batch_no.strip():
|
|
@@ -80,23 +83,31 @@ def predict_emotion(batch_no: str, image):
|
|
| 80 |
confidence = result['emotion'][emotion]
|
| 81 |
region = result['region']
|
| 82 |
|
| 83 |
-
#
|
| 84 |
x, y, w, h = region['x'], region['y'], region['w'], region['h']
|
| 85 |
-
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 86 |
-
cv2.putText(frame, f"{emotion} {EMOTION_MAP[emotion]} {confidence:.1f}%",
|
| 87 |
-
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 88 |
|
| 89 |
-
# Save
|
|
|
|
| 90 |
timestamp = int(time.time())
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
cv2.imwrite(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
# Convert back to PIL format for display
|
| 99 |
-
output_img = Image.fromarray(cv2.cvtColor(
|
| 100 |
return output_img, f"Batch {batch_no}: {emotion.title()} ({confidence:.1f}%)", "", gr.Image(visible=True), gr.Textbox(visible=True)
|
| 101 |
|
| 102 |
except Exception as e:
|
|
@@ -107,21 +118,66 @@ def toggle_webcam(batch_no):
|
|
| 107 |
return gr.Image(visible=True), gr.Image(visible=False), gr.Textbox(visible=False), ""
|
| 108 |
return gr.Image(visible=False), gr.Image(visible=False), gr.Textbox(visible=False), "Please enter a batch number"
|
| 109 |
|
| 110 |
-
def
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
def get_logs():
|
| 127 |
if LOG_FILE.exists():
|
|
@@ -139,12 +195,15 @@ def download_logs():
|
|
| 139 |
return str(LOG_FILE)
|
| 140 |
return None
|
| 141 |
|
| 142 |
-
def
|
|
|
|
| 143 |
# Clear all images
|
| 144 |
for emotion in EMOTION_MAP.keys():
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
file.
|
|
|
|
|
|
|
| 148 |
|
| 149 |
# Clear logs
|
| 150 |
if LOG_FILE.exists():
|
|
@@ -153,7 +212,7 @@ def clear_data():
|
|
| 153 |
# Recreate empty log file
|
| 154 |
with open(LOG_FILE, 'w', newline='') as f:
|
| 155 |
writer = csv.writer(f)
|
| 156 |
-
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "
|
| 157 |
|
| 158 |
return "All data has been cleared", pd.DataFrame(), None
|
| 159 |
|
|
@@ -161,6 +220,7 @@ def clear_data():
|
|
| 161 |
with gr.Blocks(title="Emotion Capture", css="""
|
| 162 |
.gradio-container { max-width: 800px !important }
|
| 163 |
.message { color: red; font-weight: bold; }
|
|
|
|
| 164 |
""") as capture_interface:
|
| 165 |
|
| 166 |
gr.Markdown("""
|
|
@@ -205,44 +265,117 @@ with gr.Blocks(title="Emotion Capture", css="""
|
|
| 205 |
|
| 206 |
# Data Management Interface
|
| 207 |
with gr.Blocks(title="Data Management", css="""
|
| 208 |
-
.gradio-container { max-width:
|
| 209 |
.data-section { border: 1px solid #ccc; padding: 20px; border-radius: 5px; margin-top: 20px; }
|
|
|
|
|
|
|
| 210 |
""") as data_interface:
|
| 211 |
|
| 212 |
gr.Markdown("# Data Management Interface")
|
| 213 |
|
| 214 |
-
with gr.Tab("
|
| 215 |
-
with gr.Column(
|
| 216 |
-
gr.Markdown("##
|
| 217 |
with gr.Row():
|
| 218 |
emotion_selector = gr.Dropdown(
|
| 219 |
choices=["All Emotions"] + list(EMOTION_MAP.keys()),
|
| 220 |
-
label="
|
| 221 |
-
value="All Emotions"
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
)
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
download_btn.click(
|
| 228 |
-
|
| 229 |
-
inputs=
|
| 230 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
with gr.Tab("Emotion Logs"):
|
| 234 |
-
with gr.Column(
|
| 235 |
-
gr.Markdown("## Emotion Logs")
|
| 236 |
with gr.Row():
|
| 237 |
-
|
| 238 |
download_logs_btn = gr.Button("Download Logs as CSV")
|
| 239 |
-
|
| 240 |
|
| 241 |
logs_display = gr.Markdown()
|
| 242 |
logs_csv = gr.File(label="Logs Download")
|
| 243 |
clear_message = gr.Textbox(label="Status", interactive=False)
|
| 244 |
|
| 245 |
-
|
| 246 |
view_logs,
|
| 247 |
outputs=logs_display
|
| 248 |
)
|
|
@@ -252,9 +385,12 @@ with gr.Blocks(title="Data Management", css="""
|
|
| 252 |
outputs=logs_csv
|
| 253 |
)
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
outputs=[clear_message, logs_display, logs_csv]
|
|
|
|
|
|
|
|
|
|
| 258 |
)
|
| 259 |
|
| 260 |
# Initial load of logs
|
|
@@ -266,7 +402,16 @@ with gr.Blocks(title="Data Management", css="""
|
|
| 266 |
# Combine interfaces
|
| 267 |
demo = gr.TabbedInterface(
|
| 268 |
[capture_interface, data_interface],
|
| 269 |
-
["Emotion Capture", "Data Management"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
)
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|
|
|
|
| 26 |
SAVE_DIR = Path("/tmp/emotion_results")
|
| 27 |
SAVE_DIR.mkdir(exist_ok=True)
|
| 28 |
|
| 29 |
+
# Create directories
|
| 30 |
+
(SAVE_DIR / "faces").mkdir(exist_ok=True) # For raw face crops
|
| 31 |
+
(SAVE_DIR / "annotated").mkdir(exist_ok=True) # For annotated images
|
| 32 |
for emotion in EMOTION_MAP.keys():
|
| 33 |
+
(SAVE_DIR / "faces" / emotion).mkdir(exist_ok=True, parents=True)
|
| 34 |
+
(SAVE_DIR / "annotated" / emotion).mkdir(exist_ok=True, parents=True)
|
| 35 |
|
| 36 |
# Log file setup
|
| 37 |
LOG_FILE = SAVE_DIR / "emotion_logs.csv"
|
| 38 |
if not LOG_FILE.exists():
|
| 39 |
with open(LOG_FILE, 'w', newline='') as f:
|
| 40 |
writer = csv.writer(f)
|
| 41 |
+
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
|
| 42 |
|
| 43 |
+
def log_emotion(batch_no, emotion, confidence, face_path, annotated_path):
|
| 44 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 45 |
with open(LOG_FILE, 'a', newline='') as f:
|
| 46 |
writer = csv.writer(f)
|
| 47 |
+
writer.writerow([timestamp, batch_no, emotion, confidence, str(face_path), str(annotated_path)])
|
| 48 |
|
| 49 |
def predict_emotion(batch_no: str, image):
|
| 50 |
if not batch_no.strip():
|
|
|
|
| 83 |
confidence = result['emotion'][emotion]
|
| 84 |
region = result['region']
|
| 85 |
|
| 86 |
+
# Extract face coordinates
|
| 87 |
x, y, w, h = region['x'], region['y'], region['w'], region['h']
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# 1. Save raw face crop (for training)
|
| 90 |
+
face_crop = frame[y:y+h, x:x+w]
|
| 91 |
timestamp = int(time.time())
|
| 92 |
+
face_dir = SAVE_DIR / "faces" / emotion
|
| 93 |
+
face_path = face_dir / f"{batch_no}_{timestamp}.jpg"
|
| 94 |
+
cv2.imwrite(str(face_path), face_crop)
|
| 95 |
+
|
| 96 |
+
# 2. Create and save annotated image (for display)
|
| 97 |
+
annotated_frame = frame.copy()
|
| 98 |
+
cv2.rectangle(annotated_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 99 |
+
cv2.putText(annotated_frame, f"{emotion} {EMOTION_MAP[emotion]} {confidence:.1f}%",
|
| 100 |
+
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 101 |
|
| 102 |
+
annotated_dir = SAVE_DIR / "annotated" / emotion
|
| 103 |
+
annotated_path = annotated_dir / f"{batch_no}_{timestamp}.jpg"
|
| 104 |
+
cv2.imwrite(str(annotated_path), annotated_frame)
|
| 105 |
+
|
| 106 |
+
# Log both paths
|
| 107 |
+
log_emotion(batch_no, emotion, confidence, face_path, annotated_path)
|
| 108 |
|
| 109 |
# Convert back to PIL format for display
|
| 110 |
+
output_img = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
| 111 |
return output_img, f"Batch {batch_no}: {emotion.title()} ({confidence:.1f}%)", "", gr.Image(visible=True), gr.Textbox(visible=True)
|
| 112 |
|
| 113 |
except Exception as e:
|
|
|
|
| 118 |
return gr.Image(visible=True), gr.Image(visible=False), gr.Textbox(visible=False), ""
|
| 119 |
return gr.Image(visible=False), gr.Image(visible=False), gr.Textbox(visible=False), "Please enter a batch number"
|
| 120 |
|
| 121 |
+
def get_image_gallery(emotion, image_type):
|
| 122 |
+
"""Get image gallery for selected emotion and type"""
|
| 123 |
+
if emotion == "All Emotions":
|
| 124 |
+
image_dict = {}
|
| 125 |
+
for emot in EMOTION_MAP.keys():
|
| 126 |
+
folder = SAVE_DIR / image_type / emot
|
| 127 |
+
image_dict[emot] = [str(f) for f in folder.glob("*.jpg") if f.exists()]
|
| 128 |
+
else:
|
| 129 |
+
folder = SAVE_DIR / image_type / emotion
|
| 130 |
+
image_dict = {emotion: [str(f) for f in folder.glob("*.jpg") if f.exists()]}
|
| 131 |
+
return image_dict
|
| 132 |
+
|
| 133 |
+
def create_custom_zip(selected_images):
|
| 134 |
+
"""Create zip from selected images"""
|
| 135 |
+
if not selected_images:
|
| 136 |
+
return None
|
| 137 |
+
zip_path = SAVE_DIR / "selected_images.zip"
|
| 138 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 139 |
+
for img_path in selected_images:
|
| 140 |
+
if Path(img_path).exists():
|
| 141 |
+
zipf.write(img_path, arcname=Path(img_path).name)
|
| 142 |
+
return str(zip_path) if zip_path.exists() else None
|
| 143 |
+
|
| 144 |
+
def delete_selected_images(selected_images):
|
| 145 |
+
"""Delete selected images"""
|
| 146 |
+
if not selected_images:
|
| 147 |
+
return "No images selected"
|
| 148 |
+
|
| 149 |
+
deleted_count = 0
|
| 150 |
+
for img_path in selected_images:
|
| 151 |
+
try:
|
| 152 |
+
Path(img_path).unlink()
|
| 153 |
+
deleted_count += 1
|
| 154 |
+
except Exception as e:
|
| 155 |
+
print(f"Error deleting {img_path}: {e}")
|
| 156 |
+
|
| 157 |
+
# Update logs
|
| 158 |
+
if LOG_FILE.exists():
|
| 159 |
+
df = pd.read_csv(LOG_FILE)
|
| 160 |
+
for img_path in selected_images:
|
| 161 |
+
if "faces" in img_path:
|
| 162 |
+
df = df[df.face_path != img_path]
|
| 163 |
+
else:
|
| 164 |
+
df = df[df.annotated_path != img_path]
|
| 165 |
+
df.to_csv(LOG_FILE, index=False)
|
| 166 |
+
|
| 167 |
+
return f"Deleted {deleted_count} images"
|
| 168 |
+
|
| 169 |
+
def update_gallery(emotion, image_type):
|
| 170 |
+
"""Update the image gallery view"""
|
| 171 |
+
image_dict = get_image_gallery(emotion, image_type)
|
| 172 |
+
gallery = []
|
| 173 |
+
for emotion, images in image_dict.items():
|
| 174 |
+
for img_path in images:
|
| 175 |
+
gallery.append((img_path, f"{emotion}: {Path(img_path).name}"))
|
| 176 |
+
return gr.Gallery(value=gallery, label="Image Gallery"), gr.CheckboxGroup(
|
| 177 |
+
choices=[img[0] for img in gallery],
|
| 178 |
+
label="Selected Images",
|
| 179 |
+
value=[]
|
| 180 |
+
)
|
| 181 |
|
| 182 |
def get_logs():
|
| 183 |
if LOG_FILE.exists():
|
|
|
|
| 195 |
return str(LOG_FILE)
|
| 196 |
return None
|
| 197 |
|
| 198 |
+
def clear_all_data():
|
| 199 |
+
"""Clear all images and logs"""
|
| 200 |
# Clear all images
|
| 201 |
for emotion in EMOTION_MAP.keys():
|
| 202 |
+
for img_type in ["faces", "annotated"]:
|
| 203 |
+
folder = SAVE_DIR / img_type / emotion
|
| 204 |
+
for file in folder.glob("*"):
|
| 205 |
+
if file.is_file():
|
| 206 |
+
file.unlink()
|
| 207 |
|
| 208 |
# Clear logs
|
| 209 |
if LOG_FILE.exists():
|
|
|
|
| 212 |
# Recreate empty log file
|
| 213 |
with open(LOG_FILE, 'w', newline='') as f:
|
| 214 |
writer = csv.writer(f)
|
| 215 |
+
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
|
| 216 |
|
| 217 |
return "All data has been cleared", pd.DataFrame(), None
|
| 218 |
|
|
|
|
| 220 |
with gr.Blocks(title="Emotion Capture", css="""
|
| 221 |
.gradio-container { max-width: 800px !important }
|
| 222 |
.message { color: red; font-weight: bold; }
|
| 223 |
+
.gallery { grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)); }
|
| 224 |
""") as capture_interface:
|
| 225 |
|
| 226 |
gr.Markdown("""
|
|
|
|
| 265 |
|
| 266 |
# Data Management Interface
|
| 267 |
with gr.Blocks(title="Data Management", css="""
|
| 268 |
+
.gradio-container { max-width: 1200px !important }
|
| 269 |
.data-section { border: 1px solid #ccc; padding: 20px; border-radius: 5px; margin-top: 20px; }
|
| 270 |
+
.gallery { grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)); }
|
| 271 |
+
.action-buttons { margin-top: 20px; }
|
| 272 |
""") as data_interface:
|
| 273 |
|
| 274 |
gr.Markdown("# Data Management Interface")
|
| 275 |
|
| 276 |
+
with gr.Tab("Image Management"):
|
| 277 |
+
with gr.Column():
|
| 278 |
+
gr.Markdown("## Select and Manage Images")
|
| 279 |
with gr.Row():
|
| 280 |
emotion_selector = gr.Dropdown(
|
| 281 |
choices=["All Emotions"] + list(EMOTION_MAP.keys()),
|
| 282 |
+
label="Emotion Category",
|
| 283 |
+
value="All Emotions"
|
| 284 |
+
)
|
| 285 |
+
image_type_selector = gr.Dropdown(
|
| 286 |
+
choices=["faces", "annotated"],
|
| 287 |
+
label="Image Type",
|
| 288 |
+
value="faces"
|
| 289 |
)
|
| 290 |
+
refresh_btn = gr.Button("Refresh Gallery")
|
| 291 |
+
|
| 292 |
+
gallery = gr.Gallery(
|
| 293 |
+
label="Image Gallery",
|
| 294 |
+
elem_classes="gallery",
|
| 295 |
+
columns=4
|
| 296 |
+
)
|
| 297 |
+
selected_images = gr.CheckboxGroup(
|
| 298 |
+
label="Selected Images",
|
| 299 |
+
interactive=True
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Row(variant="panel"):
|
| 303 |
+
with gr.Column():
|
| 304 |
+
gr.Markdown("### Download Options")
|
| 305 |
+
download_btn = gr.Button("Download Selected", variant="primary")
|
| 306 |
+
download_all_btn = gr.Button("Download All in Category")
|
| 307 |
+
download_output = gr.File(label="Download Result")
|
| 308 |
+
|
| 309 |
+
with gr.Column():
|
| 310 |
+
gr.Markdown("### Delete Options")
|
| 311 |
+
delete_btn = gr.Button("Delete Selected", variant="stop")
|
| 312 |
+
delete_all_btn = gr.Button("Delete All in Category", variant="stop")
|
| 313 |
+
delete_output = gr.Textbox(label="Delete Status")
|
| 314 |
|
| 315 |
+
# Update gallery when parameters change
|
| 316 |
+
emotion_selector.change(
|
| 317 |
+
update_gallery,
|
| 318 |
+
inputs=[emotion_selector, image_type_selector],
|
| 319 |
+
outputs=[gallery, selected_images]
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
image_type_selector.change(
|
| 323 |
+
update_gallery,
|
| 324 |
+
inputs=[emotion_selector, image_type_selector],
|
| 325 |
+
outputs=[gallery, selected_images]
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
refresh_btn.click(
|
| 329 |
+
update_gallery,
|
| 330 |
+
inputs=[emotion_selector, image_type_selector],
|
| 331 |
+
outputs=[gallery, selected_images]
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Download handlers
|
| 335 |
download_btn.click(
|
| 336 |
+
create_custom_zip,
|
| 337 |
+
inputs=selected_images,
|
| 338 |
+
outputs=download_output
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
download_all_btn.click(
|
| 342 |
+
lambda e, t: create_custom_zip([img[0] for img in get_image_gallery(e, t).items() for img in img[1]]),
|
| 343 |
+
inputs=[emotion_selector, image_type_selector],
|
| 344 |
+
outputs=download_output
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Delete handlers
|
| 348 |
+
delete_btn.click(
|
| 349 |
+
delete_selected_images,
|
| 350 |
+
inputs=selected_images,
|
| 351 |
+
outputs=delete_output
|
| 352 |
+
).then(
|
| 353 |
+
lambda: update_gallery(emotion_selector.value, image_type_selector.value),
|
| 354 |
+
outputs=[gallery, selected_images]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
delete_all_btn.click(
|
| 358 |
+
lambda e, t: delete_selected_images([img for img_list in get_image_gallery(e, t).values() for img in img_list]),
|
| 359 |
+
inputs=[emotion_selector, image_type_selector],
|
| 360 |
+
outputs=delete_output
|
| 361 |
+
).then(
|
| 362 |
+
lambda: update_gallery(emotion_selector.value, image_type_selector.value),
|
| 363 |
+
outputs=[gallery, selected_images]
|
| 364 |
)
|
| 365 |
|
| 366 |
with gr.Tab("Emotion Logs"):
|
| 367 |
+
with gr.Column():
|
| 368 |
+
gr.Markdown("## Emotion Analysis Logs")
|
| 369 |
with gr.Row():
|
| 370 |
+
refresh_logs_btn = gr.Button("Refresh Logs")
|
| 371 |
download_logs_btn = gr.Button("Download Logs as CSV")
|
| 372 |
+
clear_all_btn = gr.Button("Clear All Data", variant="stop")
|
| 373 |
|
| 374 |
logs_display = gr.Markdown()
|
| 375 |
logs_csv = gr.File(label="Logs Download")
|
| 376 |
clear_message = gr.Textbox(label="Status", interactive=False)
|
| 377 |
|
| 378 |
+
refresh_logs_btn.click(
|
| 379 |
view_logs,
|
| 380 |
outputs=logs_display
|
| 381 |
)
|
|
|
|
| 385 |
outputs=logs_csv
|
| 386 |
)
|
| 387 |
|
| 388 |
+
clear_all_btn.click(
|
| 389 |
+
clear_all_data,
|
| 390 |
outputs=[clear_message, logs_display, logs_csv]
|
| 391 |
+
).then(
|
| 392 |
+
lambda: update_gallery("All Emotions", "faces"),
|
| 393 |
+
outputs=[gallery, selected_images]
|
| 394 |
)
|
| 395 |
|
| 396 |
# Initial load of logs
|
|
|
|
| 402 |
# Combine interfaces
|
| 403 |
demo = gr.TabbedInterface(
|
| 404 |
[capture_interface, data_interface],
|
| 405 |
+
["Emotion Capture", "Data Management"],
|
| 406 |
+
css="""
|
| 407 |
+
.tab { padding: 20px; }
|
| 408 |
+
"""
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# Initialize gallery and logs
|
| 412 |
+
demo.load(
|
| 413 |
+
lambda: update_gallery("All Emotions", "faces"),
|
| 414 |
+
outputs=[gallery, selected_images]
|
| 415 |
)
|
| 416 |
|
| 417 |
if __name__ == "__main__":
|