Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,12 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import cv2
|
| 3 |
import gradio as gr
|
| 4 |
from deepface import DeepFace
|
|
@@ -7,7 +15,6 @@ from PIL import Image
|
|
| 7 |
import time
|
| 8 |
from pathlib import Path
|
| 9 |
import pandas as pd
|
| 10 |
-
import re
|
| 11 |
|
| 12 |
# Configuration
|
| 13 |
EMOTION_MAP = {
|
|
@@ -41,21 +48,27 @@ def log_emotion(batch_no, emotion, confidence, face_path, annotated_path):
|
|
| 41 |
writer.writerow([timestamp, batch_no, emotion, confidence, str(face_path), str(annotated_path)])
|
| 42 |
|
| 43 |
def validate_batch_no(batch_no):
|
|
|
|
| 44 |
if not batch_no.strip():
|
| 45 |
return False, "Batch number cannot be empty"
|
| 46 |
if not re.match(r'^\d+$', batch_no):
|
| 47 |
return False, "Batch number must contain only numbers"
|
| 48 |
return True, ""
|
| 49 |
|
| 50 |
-
def
|
| 51 |
-
if not batch_no.strip()
|
| 52 |
-
return None, None, "
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
try:
|
| 55 |
-
|
|
|
|
| 56 |
if frame.ndim == 3:
|
| 57 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 58 |
|
|
|
|
| 59 |
results = None
|
| 60 |
for backend in BACKENDS:
|
| 61 |
try:
|
|
@@ -63,158 +76,604 @@ def process_frame(batch_no, frame):
|
|
| 63 |
frame,
|
| 64 |
actions=['emotion'],
|
| 65 |
detector_backend=backend,
|
| 66 |
-
enforce_detection=
|
| 67 |
silent=True
|
| 68 |
)
|
| 69 |
-
|
| 70 |
-
break
|
| 71 |
except Exception:
|
| 72 |
continue
|
| 73 |
|
| 74 |
if not results:
|
| 75 |
-
return None, None, "
|
| 76 |
|
| 77 |
-
|
|
|
|
| 78 |
emotion = result['dominant_emotion']
|
| 79 |
confidence = result['emotion'][emotion]
|
| 80 |
region = result['region']
|
| 81 |
|
|
|
|
| 82 |
x, y, w, h = region['x'], region['y'], region['w'], region['h']
|
| 83 |
|
| 84 |
-
# Save
|
|
|
|
| 85 |
timestamp = int(time.time())
|
| 86 |
face_dir = SAVE_DIR / "faces" / emotion
|
| 87 |
face_path = face_dir / f"{batch_no}_{timestamp}.jpg"
|
| 88 |
-
cv2.imwrite(str(face_path),
|
| 89 |
|
| 90 |
-
annotated
|
| 91 |
-
|
| 92 |
-
cv2.
|
| 93 |
-
|
|
|
|
| 94 |
|
| 95 |
annotated_dir = SAVE_DIR / "annotated" / emotion
|
| 96 |
annotated_path = annotated_dir / f"{batch_no}_{timestamp}.jpg"
|
| 97 |
-
cv2.imwrite(str(annotated_path),
|
| 98 |
|
|
|
|
| 99 |
log_emotion(batch_no, emotion, confidence, face_path, annotated_path)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
return (
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
)
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
#
|
| 113 |
-
with gr.Blocks(title="
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
-
|
| 119 |
label="Batch Number",
|
| 120 |
-
placeholder="Enter numbers only",
|
| 121 |
interactive=True
|
| 122 |
)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
|
| 129 |
with gr.Row():
|
| 130 |
webcam = gr.Image(
|
| 131 |
sources=["webcam"],
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
mirror_webcam=True,
|
| 134 |
-
visible=False
|
| 135 |
-
interactive=False
|
| 136 |
)
|
|
|
|
|
|
|
| 137 |
result_img = gr.Image(
|
| 138 |
-
label="Result",
|
|
|
|
| 139 |
visible=False
|
| 140 |
)
|
| 141 |
|
| 142 |
with gr.Row():
|
| 143 |
result_text = gr.Textbox(
|
| 144 |
-
label="
|
|
|
|
| 145 |
visible=False
|
| 146 |
)
|
|
|
|
|
|
|
| 147 |
done_btn = gr.Button(
|
| 148 |
-
"Done",
|
| 149 |
visible=False
|
| 150 |
)
|
| 151 |
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
return (
|
| 169 |
-
gr.Textbox(interactive=False),
|
| 170 |
-
gr.Textbox(value="Webcam activated - position your face", visible=True),
|
| 171 |
-
gr.Image(visible=True),
|
| 172 |
-
gr.Image(visible=False),
|
| 173 |
-
gr.Textbox(visible=False),
|
| 174 |
-
gr.Button(visible=False),
|
| 175 |
-
gr.Textbox(value=str(time.time()), visible=False)
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
def process_and_continue(batch_no, frame, trigger_val):
|
| 179 |
-
result_img, result_text, msg, show_img, show_text = process_frame(batch_no, frame)
|
| 180 |
-
return (
|
| 181 |
-
result_img,
|
| 182 |
-
result_text,
|
| 183 |
-
msg,
|
| 184 |
-
show_img,
|
| 185 |
-
show_text,
|
| 186 |
-
gr.Textbox.update(value=str(time.time()))
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
# Setup event handlers
|
| 190 |
-
batch_input.change(
|
| 191 |
-
handle_batch_input,
|
| 192 |
-
inputs=batch_input,
|
| 193 |
-
outputs=[batch_input, status, webcam, result_img, result_text, done_btn, trigger]
|
| 194 |
)
|
| 195 |
|
|
|
|
| 196 |
webcam.change(
|
| 197 |
-
|
| 198 |
-
inputs=[
|
| 199 |
-
outputs=[result_img, result_text,
|
| 200 |
-
queue=False
|
| 201 |
)
|
| 202 |
|
| 203 |
-
|
| 204 |
-
return (
|
| 205 |
-
gr.Textbox(value="", interactive=True),
|
| 206 |
-
gr.Textbox(value="", visible=False),
|
| 207 |
-
gr.Image(visible=False),
|
| 208 |
-
gr.Image(visible=False),
|
| 209 |
-
gr.Textbox(visible=False),
|
| 210 |
-
gr.Button(visible=False),
|
| 211 |
-
gr.Textbox(visible=False)
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
done_btn.click(
|
| 215 |
-
|
| 216 |
-
outputs=[
|
| 217 |
)
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
if __name__ == "__main__":
|
| 220 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
+
import csv
|
| 3 |
+
import zipfile
|
| 4 |
+
import shutil
|
| 5 |
+
import re
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 8 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 9 |
+
|
| 10 |
import cv2
|
| 11 |
import gradio as gr
|
| 12 |
from deepface import DeepFace
|
|
|
|
| 15 |
import time
|
| 16 |
from pathlib import Path
|
| 17 |
import pandas as pd
|
|
|
|
| 18 |
|
| 19 |
# Configuration
|
| 20 |
EMOTION_MAP = {
|
|
|
|
| 48 |
writer.writerow([timestamp, batch_no, emotion, confidence, str(face_path), str(annotated_path)])
|
| 49 |
|
| 50 |
def validate_batch_no(batch_no):
|
| 51 |
+
"""Validate that batch number contains only digits"""
|
| 52 |
if not batch_no.strip():
|
| 53 |
return False, "Batch number cannot be empty"
|
| 54 |
if not re.match(r'^\d+$', batch_no):
|
| 55 |
return False, "Batch number must contain only numbers"
|
| 56 |
return True, ""
|
| 57 |
|
| 58 |
+
def predict_emotion(batch_no: str, image):
|
| 59 |
+
if not batch_no.strip():
|
| 60 |
+
return None, None, "Please enter a batch number first", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
|
| 61 |
+
|
| 62 |
+
if image is None:
|
| 63 |
+
return None, None, "Please capture your face first", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
|
| 64 |
|
| 65 |
try:
|
| 66 |
+
# Convert PIL Image to OpenCV format
|
| 67 |
+
frame = np.array(image)
|
| 68 |
if frame.ndim == 3:
|
| 69 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 70 |
|
| 71 |
+
# Try different backends for face detection
|
| 72 |
results = None
|
| 73 |
for backend in BACKENDS:
|
| 74 |
try:
|
|
|
|
| 76 |
frame,
|
| 77 |
actions=['emotion'],
|
| 78 |
detector_backend=backend,
|
| 79 |
+
enforce_detection=True,
|
| 80 |
silent=True
|
| 81 |
)
|
| 82 |
+
break
|
|
|
|
| 83 |
except Exception:
|
| 84 |
continue
|
| 85 |
|
| 86 |
if not results:
|
| 87 |
+
return None, None, "No face detected. Please try again.", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
|
| 88 |
|
| 89 |
+
# Process the first face found
|
| 90 |
+
result = results[0] if isinstance(results, list) else results
|
| 91 |
emotion = result['dominant_emotion']
|
| 92 |
confidence = result['emotion'][emotion]
|
| 93 |
region = result['region']
|
| 94 |
|
| 95 |
+
# Extract face coordinates
|
| 96 |
x, y, w, h = region['x'], region['y'], region['w'], region['h']
|
| 97 |
|
| 98 |
+
# 1. Save raw face crop
|
| 99 |
+
face_crop = frame[y:y+h, x:x+w]
|
| 100 |
timestamp = int(time.time())
|
| 101 |
face_dir = SAVE_DIR / "faces" / emotion
|
| 102 |
face_path = face_dir / f"{batch_no}_{timestamp}.jpg"
|
| 103 |
+
cv2.imwrite(str(face_path), face_crop)
|
| 104 |
|
| 105 |
+
# 2. Create and save annotated image
|
| 106 |
+
annotated_frame = frame.copy()
|
| 107 |
+
cv2.rectangle(annotated_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 108 |
+
cv2.putText(annotated_frame, f"{emotion} {EMOTION_MAP[emotion]} {confidence:.1f}%",
|
| 109 |
+
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 110 |
|
| 111 |
annotated_dir = SAVE_DIR / "annotated" / emotion
|
| 112 |
annotated_path = annotated_dir / f"{batch_no}_{timestamp}.jpg"
|
| 113 |
+
cv2.imwrite(str(annotated_path), annotated_frame)
|
| 114 |
|
| 115 |
+
# Log both paths
|
| 116 |
log_emotion(batch_no, emotion, confidence, face_path, annotated_path)
|
| 117 |
|
| 118 |
+
# Convert back to PIL format for display
|
| 119 |
+
output_img = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
| 120 |
+
return output_img, f"Batch {batch_no}: {emotion.title()} ({confidence:.1f}%)", "", gr.Image(visible=True), gr.Textbox(visible=True), gr.Button(visible=True)
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
return None, None, f"Error processing image: {str(e)}", gr.Image(visible=False), gr.Textbox(visible=False), gr.Button(visible=False)
|
| 124 |
+
|
| 125 |
+
def check_batch_no(batch_no):
|
| 126 |
+
"""Check if batch number is entered and valid"""
|
| 127 |
+
is_valid, validation_msg = validate_batch_no(batch_no)
|
| 128 |
+
if not is_valid:
|
| 129 |
+
return (
|
| 130 |
+
gr.Textbox(interactive=True), # Keep batch_no interactive
|
| 131 |
+
gr.Textbox(value=validation_msg, visible=bool(validation_msg)), # Show validation message
|
| 132 |
+
gr.Image(visible=False), # Hide webcam
|
| 133 |
+
gr.Image(visible=False), # Hide result image
|
| 134 |
+
gr.Textbox(visible=False), # Hide result text
|
| 135 |
+
gr.Button(visible=False) # Hide done button
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# After validation, disable input and show countdown
|
| 139 |
+
return (
|
| 140 |
+
gr.Textbox(interactive=False), # Disable batch_no
|
| 141 |
+
gr.Textbox(value="Processing will start in 5 seconds...", visible=True), # Show countdown
|
| 142 |
+
gr.Image(visible=False), # Keep webcam hidden initially
|
| 143 |
+
gr.Image(visible=False), # Hide result image
|
| 144 |
+
gr.Textbox(visible=False), # Hide result text
|
| 145 |
+
gr.Button(visible=False) # Hide done button
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def activate_webcam(batch_no):
|
| 149 |
+
"""Actually activate the webcam after the delay"""
|
| 150 |
+
is_valid, _ = validate_batch_no(batch_no)
|
| 151 |
+
if not is_valid:
|
| 152 |
return (
|
| 153 |
+
gr.Textbox(interactive=True), # Re-enable batch_no if invalid
|
| 154 |
+
gr.Textbox(visible=False), # Hide message
|
| 155 |
+
gr.Image(visible=False), # Hide webcam
|
| 156 |
+
gr.Image(visible=False), # Hide result image
|
| 157 |
+
gr.Textbox(visible=False), # Hide result text
|
| 158 |
+
gr.Button(visible=False) # Hide done button
|
| 159 |
)
|
| 160 |
|
| 161 |
+
return (
|
| 162 |
+
gr.Textbox(interactive=False), # Keep batch_no disabled
|
| 163 |
+
gr.Textbox(value="Please capture your face now", visible=True), # Show instruction
|
| 164 |
+
gr.Image(visible=True), # Show webcam
|
| 165 |
+
gr.Image(visible=False), # Hide result image
|
| 166 |
+
gr.Textbox(visible=False), # Hide result text
|
| 167 |
+
gr.Button(visible=False) # Hide done button
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def reset_interface():
|
| 171 |
+
"""Reset the interface to initial state"""
|
| 172 |
+
return (
|
| 173 |
+
gr.Textbox(value="", interactive=True), # Enable batch_no
|
| 174 |
+
gr.Textbox(value="", visible=False), # Hide message
|
| 175 |
+
gr.Image(value=None, visible=False), # Hide webcam
|
| 176 |
+
gr.Image(visible=False), # Hide result image
|
| 177 |
+
gr.Textbox(visible=False), # Hide result text
|
| 178 |
+
gr.Button(visible=False) # Hide done button
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
def get_image_gallery(emotion, image_type):
|
| 182 |
+
"""Get image gallery for selected emotion and type"""
|
| 183 |
+
if emotion == "All Emotions":
|
| 184 |
+
image_dict = {}
|
| 185 |
+
for emot in EMOTION_MAP.keys():
|
| 186 |
+
folder = SAVE_DIR / image_type / emot
|
| 187 |
+
image_dict[emot] = [str(f) for f in folder.glob("*.jpg") if f.exists()]
|
| 188 |
+
else:
|
| 189 |
+
folder = SAVE_DIR / image_type / emotion
|
| 190 |
+
image_dict = {emotion: [str(f) for f in folder.glob("*.jpg") if f.exists()]}
|
| 191 |
+
return image_dict
|
| 192 |
+
|
| 193 |
+
def create_custom_zip(file_paths):
|
| 194 |
+
"""Create zip from selected images and return the file path"""
|
| 195 |
+
if not file_paths:
|
| 196 |
+
return None
|
| 197 |
+
|
| 198 |
+
temp_dir = SAVE_DIR / "temp_downloads"
|
| 199 |
+
temp_dir.mkdir(exist_ok=True)
|
| 200 |
+
zip_path = temp_dir / f"emotion_images_{int(time.time())}.zip"
|
| 201 |
+
|
| 202 |
+
if zip_path.exists():
|
| 203 |
+
try:
|
| 204 |
+
zip_path.unlink()
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Error deleting old zip: {e}")
|
| 207 |
+
|
| 208 |
+
try:
|
| 209 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 210 |
+
for file_path in file_paths:
|
| 211 |
+
file_path = Path(file_path)
|
| 212 |
+
if file_path.exists():
|
| 213 |
+
zipf.write(file_path, arcname=file_path.name)
|
| 214 |
+
return str(zip_path) if zip_path.exists() else None
|
| 215 |
+
except Exception as e:
|
| 216 |
+
print(f"Error creating zip file: {e}")
|
| 217 |
+
return None
|
| 218 |
+
|
| 219 |
+
def download_all_emotions_structured():
|
| 220 |
+
"""Download all emotions in a structured ZIP with folders for each emotion"""
|
| 221 |
+
temp_dir = SAVE_DIR / "temp_downloads"
|
| 222 |
+
temp_dir.mkdir(exist_ok=True)
|
| 223 |
+
zip_path = temp_dir / f"all_emotions_structured_{int(time.time())}.zip"
|
| 224 |
+
|
| 225 |
+
if zip_path.exists():
|
| 226 |
+
try:
|
| 227 |
+
zip_path.unlink()
|
| 228 |
+
except Exception as e:
|
| 229 |
+
print(f"Error deleting old zip: {e}")
|
| 230 |
+
|
| 231 |
+
try:
|
| 232 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 233 |
+
for emotion in EMOTION_MAP.keys():
|
| 234 |
+
# Add faces
|
| 235 |
+
face_dir = SAVE_DIR / "faces" / emotion
|
| 236 |
+
for face_file in face_dir.glob("*.jpg"):
|
| 237 |
+
if face_file.exists():
|
| 238 |
+
arcname = f"faces/{emotion}/{face_file.name}"
|
| 239 |
+
zipf.write(face_file, arcname=arcname)
|
| 240 |
+
|
| 241 |
+
# Add annotated images
|
| 242 |
+
annotated_dir = SAVE_DIR / "annotated" / emotion
|
| 243 |
+
for annotated_file in annotated_dir.glob("*.jpg"):
|
| 244 |
+
if annotated_file.exists():
|
| 245 |
+
arcname = f"annotated/{emotion}/{annotated_file.name}"
|
| 246 |
+
zipf.write(annotated_file, arcname=arcname)
|
| 247 |
+
return str(zip_path) if zip_path.exists() else None
|
| 248 |
+
except Exception as e:
|
| 249 |
+
print(f"Error creating structured zip file: {e}")
|
| 250 |
+
return None
|
| 251 |
+
|
| 252 |
+
def delete_selected_images(selected_images):
|
| 253 |
+
"""Delete selected images with proper validation"""
|
| 254 |
+
if not selected_images:
|
| 255 |
+
return "No images selected for deletion"
|
| 256 |
+
|
| 257 |
+
deleted_count = 0
|
| 258 |
+
failed_deletions = []
|
| 259 |
+
|
| 260 |
+
for img_path in selected_images:
|
| 261 |
+
img_path = Path(img_path)
|
| 262 |
+
try:
|
| 263 |
+
if img_path.exists():
|
| 264 |
+
img_path.unlink()
|
| 265 |
+
deleted_count += 1
|
| 266 |
+
else:
|
| 267 |
+
failed_deletions.append(str(img_path))
|
| 268 |
+
except Exception as e:
|
| 269 |
+
print(f"Error deleting {img_path}: {e}")
|
| 270 |
+
failed_deletions.append(str(img_path))
|
| 271 |
+
|
| 272 |
+
if deleted_count > 0 and LOG_FILE.exists():
|
| 273 |
+
try:
|
| 274 |
+
df = pd.read_csv(LOG_FILE)
|
| 275 |
+
for img_path in selected_images:
|
| 276 |
+
img_path = str(img_path)
|
| 277 |
+
if "faces" in img_path:
|
| 278 |
+
df = df[df.face_path != img_path]
|
| 279 |
+
else:
|
| 280 |
+
df = df[df.annotated_path != img_path]
|
| 281 |
+
df.to_csv(LOG_FILE, index=False)
|
| 282 |
+
except Exception as e:
|
| 283 |
+
print(f"Error updating logs: {e}")
|
| 284 |
+
|
| 285 |
+
status_msg = f"Deleted {deleted_count} images"
|
| 286 |
+
if failed_deletions:
|
| 287 |
+
status_msg += f"\nFailed to delete {len(failed_deletions)} images"
|
| 288 |
+
return status_msg
|
| 289 |
+
|
| 290 |
+
def delete_images_in_category(emotion, image_type, confirm=False):
|
| 291 |
+
"""Delete all images in a specific category with confirmation"""
|
| 292 |
+
if not confirm:
|
| 293 |
+
return "Please check the confirmation box to delete all images in this category"
|
| 294 |
+
|
| 295 |
+
if emotion == "All Emotions":
|
| 296 |
+
deleted_count = 0
|
| 297 |
+
for emot in EMOTION_MAP.keys():
|
| 298 |
+
deleted_count += delete_images_in_category(emot, image_type, confirm=True)
|
| 299 |
+
return f"Deleted {deleted_count} images across all emotion categories"
|
| 300 |
+
|
| 301 |
+
folder = SAVE_DIR / image_type / emotion
|
| 302 |
+
deleted_count = 0
|
| 303 |
+
failed_deletions = []
|
| 304 |
+
|
| 305 |
+
for file in folder.glob("*"):
|
| 306 |
+
if file.is_file():
|
| 307 |
+
try:
|
| 308 |
+
file.unlink()
|
| 309 |
+
deleted_count += 1
|
| 310 |
+
except Exception as e:
|
| 311 |
+
print(f"Error deleting {file}: {e}")
|
| 312 |
+
failed_deletions.append(str(file))
|
| 313 |
+
|
| 314 |
+
if deleted_count > 0 and LOG_FILE.exists():
|
| 315 |
+
try:
|
| 316 |
+
df = pd.read_csv(LOG_FILE)
|
| 317 |
+
if image_type == "faces":
|
| 318 |
+
df = df[df.emotion != emotion]
|
| 319 |
+
else:
|
| 320 |
+
df = df[~((df.emotion == emotion) & (df.annotated_path.str.contains(str(folder))))]
|
| 321 |
+
df.to_csv(LOG_FILE, index=False)
|
| 322 |
+
except Exception as e:
|
| 323 |
+
print(f"Error updating logs: {e}")
|
| 324 |
+
|
| 325 |
+
status_msg = f"Deleted {deleted_count} images from {emotion}/{image_type}"
|
| 326 |
+
if failed_deletions:
|
| 327 |
+
status_msg += f"\nFailed to delete {len(failed_deletions)} images"
|
| 328 |
+
return status_msg
|
| 329 |
+
|
| 330 |
+
def get_logs():
|
| 331 |
+
if LOG_FILE.exists():
|
| 332 |
+
return pd.read_csv(LOG_FILE)
|
| 333 |
+
return pd.DataFrame()
|
| 334 |
+
|
| 335 |
+
def view_logs():
|
| 336 |
+
df = get_logs()
|
| 337 |
+
if not df.empty:
|
| 338 |
+
try:
|
| 339 |
+
return df.to_markdown()
|
| 340 |
+
except ImportError:
|
| 341 |
+
return df.to_string()
|
| 342 |
+
return "No logs available yet"
|
| 343 |
+
|
| 344 |
+
def download_logs():
|
| 345 |
+
if LOG_FILE.exists():
|
| 346 |
+
temp_dir = SAVE_DIR / "temp_downloads"
|
| 347 |
+
temp_dir.mkdir(exist_ok=True)
|
| 348 |
+
download_path = temp_dir / "emotion_logs.csv"
|
| 349 |
+
shutil.copy2(LOG_FILE, download_path)
|
| 350 |
+
return str(download_path)
|
| 351 |
+
return None
|
| 352 |
+
|
| 353 |
+
def clear_all_data():
|
| 354 |
+
"""Clear all images and logs"""
|
| 355 |
+
deleted_count = 0
|
| 356 |
+
|
| 357 |
+
for emotion in EMOTION_MAP.keys():
|
| 358 |
+
for img_type in ["faces", "annotated"]:
|
| 359 |
+
folder = SAVE_DIR / img_type / emotion
|
| 360 |
+
for file in folder.glob("*"):
|
| 361 |
+
if file.is_file():
|
| 362 |
+
try:
|
| 363 |
+
file.unlink()
|
| 364 |
+
deleted_count += 1
|
| 365 |
+
except Exception as e:
|
| 366 |
+
print(f"Error deleting {file}: {e}")
|
| 367 |
+
|
| 368 |
+
temp_dir = SAVE_DIR / "temp_downloads"
|
| 369 |
+
if temp_dir.exists():
|
| 370 |
+
try:
|
| 371 |
+
shutil.rmtree(temp_dir)
|
| 372 |
+
except Exception as e:
|
| 373 |
+
print(f"Error deleting temp directory: {e}")
|
| 374 |
+
|
| 375 |
+
if LOG_FILE.exists():
|
| 376 |
+
try:
|
| 377 |
+
LOG_FILE.unlink()
|
| 378 |
+
except Exception as e:
|
| 379 |
+
print(f"Error deleting log file: {e}")
|
| 380 |
+
|
| 381 |
+
try:
|
| 382 |
+
with open(LOG_FILE, 'w', newline='') as f:
|
| 383 |
+
writer = csv.writer(f)
|
| 384 |
+
writer.writerow(["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
|
| 385 |
except Exception as e:
|
| 386 |
+
print(f"Error recreating log file: {e}")
|
| 387 |
+
|
| 388 |
+
empty_df = pd.DataFrame(columns=["timestamp", "batch_no", "emotion", "confidence", "face_path", "annotated_path"])
|
| 389 |
+
return f"Deleted {deleted_count} items. All data has been cleared.", empty_df, None
|
| 390 |
|
| 391 |
+
# Capture Interface
|
| 392 |
+
with gr.Blocks(title="Emotion Capture", css="""
|
| 393 |
+
.gradio-container { max-width: 800px !important }
|
| 394 |
+
.message { color: red; font-weight: bold; }
|
| 395 |
+
.gallery { grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)); }
|
| 396 |
+
.disabled-input { background-color: #f0f0f0; }
|
| 397 |
+
.processing { color: orange; font-weight: bold; }
|
| 398 |
+
.success { color: green; font-weight: bold; }
|
| 399 |
+
""") as capture_interface:
|
| 400 |
+
|
| 401 |
+
gr.Markdown("""
|
| 402 |
+
# Emotion Capture Interface
|
| 403 |
+
1. Enter/scan your batch number (numbers only)
|
| 404 |
+
2. System will automatically proceed after 5 seconds of inactivity
|
| 405 |
+
3. Webcam will activate for face capture
|
| 406 |
+
4. View your emotion analysis results
|
| 407 |
+
5. Click "Done" to reset the interface
|
| 408 |
+
""")
|
| 409 |
|
| 410 |
with gr.Row():
|
| 411 |
+
batch_no = gr.Textbox(
|
| 412 |
label="Batch Number",
|
| 413 |
+
placeholder="Enter or scan numbers only",
|
| 414 |
interactive=True
|
| 415 |
)
|
| 416 |
+
|
| 417 |
+
message = gr.Textbox(
|
| 418 |
+
label="Status",
|
| 419 |
+
interactive=False,
|
| 420 |
+
elem_classes="message",
|
| 421 |
+
visible=False
|
| 422 |
+
)
|
| 423 |
|
| 424 |
with gr.Row():
|
| 425 |
webcam = gr.Image(
|
| 426 |
sources=["webcam"],
|
| 427 |
+
type="pil",
|
| 428 |
+
label="Face Capture",
|
| 429 |
+
interactive=True,
|
| 430 |
mirror_webcam=True,
|
| 431 |
+
visible=False
|
|
|
|
| 432 |
)
|
| 433 |
+
|
| 434 |
+
with gr.Row():
|
| 435 |
result_img = gr.Image(
|
| 436 |
+
label="Analysis Result",
|
| 437 |
+
interactive=False,
|
| 438 |
visible=False
|
| 439 |
)
|
| 440 |
|
| 441 |
with gr.Row():
|
| 442 |
result_text = gr.Textbox(
|
| 443 |
+
label="Emotion Result",
|
| 444 |
+
interactive=False,
|
| 445 |
visible=False
|
| 446 |
)
|
| 447 |
+
|
| 448 |
+
with gr.Row():
|
| 449 |
done_btn = gr.Button(
|
| 450 |
+
"Done",
|
| 451 |
visible=False
|
| 452 |
)
|
| 453 |
|
| 454 |
+
# Detect when user stops typing (with 5 second delay)
|
| 455 |
+
batch_no.change(
|
| 456 |
+
check_batch_no,
|
| 457 |
+
inputs=batch_no,
|
| 458 |
+
outputs=[batch_no, message, webcam, result_img, result_text, done_btn],
|
| 459 |
+
queue=False
|
| 460 |
+
).then(
|
| 461 |
+
lambda: time.sleep(5), # Wait for 5 seconds of inactivity
|
| 462 |
+
None,
|
| 463 |
+
None,
|
| 464 |
+
queue=False
|
| 465 |
+
).then(
|
| 466 |
+
activate_webcam,
|
| 467 |
+
inputs=batch_no,
|
| 468 |
+
outputs=[batch_no, message, webcam, result_img, result_text, done_btn],
|
| 469 |
+
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
)
|
| 471 |
|
| 472 |
+
# Process when webcam captures an image
|
| 473 |
webcam.change(
|
| 474 |
+
predict_emotion,
|
| 475 |
+
inputs=[batch_no, webcam],
|
| 476 |
+
outputs=[result_img, result_text, message, result_img, result_text, done_btn]
|
|
|
|
| 477 |
)
|
| 478 |
|
| 479 |
+
# Reset interface when Done is clicked
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
done_btn.click(
|
| 481 |
+
reset_interface,
|
| 482 |
+
outputs=[batch_no, message, webcam, result_img, result_text, done_btn]
|
| 483 |
)
|
| 484 |
|
| 485 |
+
# Data Management Interface
|
| 486 |
+
with gr.Blocks(title="Data Management") as data_interface:
|
| 487 |
+
|
| 488 |
+
gr.Markdown("# Data Management Interface")
|
| 489 |
+
|
| 490 |
+
with gr.Tab("Image Management"):
|
| 491 |
+
with gr.Column():
|
| 492 |
+
gr.Markdown("## Select and Manage Images")
|
| 493 |
+
with gr.Row():
|
| 494 |
+
emotion_selector = gr.Dropdown(
|
| 495 |
+
choices=["All Emotions"] + list(EMOTION_MAP.keys()),
|
| 496 |
+
label="Emotion Category",
|
| 497 |
+
value="All Emotions"
|
| 498 |
+
)
|
| 499 |
+
image_type_selector = gr.Dropdown(
|
| 500 |
+
choices=["faces", "annotated"],
|
| 501 |
+
label="Image Type",
|
| 502 |
+
value="faces"
|
| 503 |
+
)
|
| 504 |
+
refresh_btn = gr.Button("Refresh Gallery")
|
| 505 |
+
|
| 506 |
+
current_image_paths = gr.State([])
|
| 507 |
+
|
| 508 |
+
gallery = gr.Gallery(
|
| 509 |
+
label="Image Gallery",
|
| 510 |
+
columns=4
|
| 511 |
+
)
|
| 512 |
+
selected_images = gr.CheckboxGroup(
|
| 513 |
+
label="Selected Images",
|
| 514 |
+
interactive=True,
|
| 515 |
+
value=[]
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
with gr.Row(variant="panel"):
|
| 519 |
+
with gr.Column():
|
| 520 |
+
gr.Markdown("### Download Options")
|
| 521 |
+
download_btn = gr.Button("Download Selected", variant="primary")
|
| 522 |
+
download_all_btn = gr.Button("Download All in Category")
|
| 523 |
+
download_structured_btn = gr.Button("Download All (Structured)", variant="primary")
|
| 524 |
+
download_output = gr.File(label="Download Result", visible=False)
|
| 525 |
+
|
| 526 |
+
with gr.Column():
|
| 527 |
+
gr.Markdown("### Delete Options")
|
| 528 |
+
delete_btn = gr.Button("Delete Selected", variant="stop")
|
| 529 |
+
with gr.Row():
|
| 530 |
+
delete_confirm = gr.Checkbox(label="I confirm I want to delete ALL images in this category", value=False)
|
| 531 |
+
delete_all_btn = gr.Button("Delete All in Category", variant="stop", interactive=False)
|
| 532 |
+
delete_output = gr.Textbox(label="Delete Status")
|
| 533 |
+
|
| 534 |
+
def update_gallery_components(emotion, image_type):
|
| 535 |
+
image_dict = get_image_gallery(emotion, image_type)
|
| 536 |
+
gallery_items = []
|
| 537 |
+
image_paths = []
|
| 538 |
+
for emotion, images in image_dict.items():
|
| 539 |
+
for img_path in images:
|
| 540 |
+
gallery_items.append((img_path, f"{emotion}: {Path(img_path).name}"))
|
| 541 |
+
image_paths.append(img_path)
|
| 542 |
+
return gallery_items, image_paths
|
| 543 |
+
|
| 544 |
+
initial_gallery, initial_paths = update_gallery_components("All Emotions", "faces")
|
| 545 |
+
gallery.value = initial_gallery
|
| 546 |
+
current_image_paths.value = initial_paths
|
| 547 |
+
selected_images.choices = initial_paths
|
| 548 |
+
|
| 549 |
+
def update_components(emotion, image_type):
|
| 550 |
+
gallery_items, image_paths = update_gallery_components(emotion, image_type)
|
| 551 |
+
return {
|
| 552 |
+
gallery: gallery_items,
|
| 553 |
+
current_image_paths: image_paths,
|
| 554 |
+
selected_images: gr.CheckboxGroup(choices=image_paths, value=[])
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
emotion_selector.change(
|
| 558 |
+
update_components,
|
| 559 |
+
inputs=[emotion_selector, image_type_selector],
|
| 560 |
+
outputs=[gallery, current_image_paths, selected_images]
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
image_type_selector.change(
|
| 564 |
+
update_components,
|
| 565 |
+
inputs=[emotion_selector, image_type_selector],
|
| 566 |
+
outputs=[gallery, current_image_paths, selected_images]
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
refresh_btn.click(
|
| 570 |
+
update_components,
|
| 571 |
+
inputs=[emotion_selector, image_type_selector],
|
| 572 |
+
outputs=[gallery, current_image_paths, selected_images]
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
download_btn.click(
|
| 576 |
+
lambda selected: create_custom_zip(selected),
|
| 577 |
+
inputs=selected_images,
|
| 578 |
+
outputs=download_output,
|
| 579 |
+
api_name="download_selected"
|
| 580 |
+
).then(
|
| 581 |
+
lambda x: gr.File(visible=x is not None),
|
| 582 |
+
inputs=download_output,
|
| 583 |
+
outputs=download_output
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
download_all_btn.click(
|
| 587 |
+
lambda emotion, img_type: create_custom_zip(
|
| 588 |
+
[str(f) for f in (SAVE_DIR / img_type / (emotion if emotion != "All Emotions" else "*")).glob("*.jpg") if f.exists()]
|
| 589 |
+
),
|
| 590 |
+
inputs=[emotion_selector, image_type_selector],
|
| 591 |
+
outputs=download_output,
|
| 592 |
+
api_name="download_all"
|
| 593 |
+
).then(
|
| 594 |
+
lambda x: gr.File(visible=x is not None),
|
| 595 |
+
inputs=download_output,
|
| 596 |
+
outputs=download_output
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
download_structured_btn.click(
|
| 600 |
+
download_all_emotions_structured,
|
| 601 |
+
outputs=download_output,
|
| 602 |
+
api_name="download_all_structured"
|
| 603 |
+
).then(
|
| 604 |
+
lambda x: gr.File(visible=x is not None),
|
| 605 |
+
inputs=download_output,
|
| 606 |
+
outputs=download_output
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
delete_btn.click(
|
| 610 |
+
lambda selected: {
|
| 611 |
+
"delete_output": delete_selected_images(selected),
|
| 612 |
+
**update_components(emotion_selector.value, image_type_selector.value)
|
| 613 |
+
},
|
| 614 |
+
inputs=selected_images,
|
| 615 |
+
outputs=[delete_output, gallery, current_image_paths, selected_images]
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
delete_confirm.change(
|
| 619 |
+
lambda x: gr.Button(interactive=x),
|
| 620 |
+
inputs=delete_confirm,
|
| 621 |
+
outputs=delete_all_btn
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
delete_all_btn.click(
|
| 625 |
+
lambda emotion, img_type, confirm: {
|
| 626 |
+
"delete_output": delete_images_in_category(emotion, img_type, confirm),
|
| 627 |
+
**update_components(emotion, img_type)
|
| 628 |
+
},
|
| 629 |
+
inputs=[emotion_selector, image_type_selector, delete_confirm],
|
| 630 |
+
outputs=[delete_output, gallery, current_image_paths, selected_images]
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
with gr.Tab("Emotion Logs"):
|
| 634 |
+
with gr.Column():
|
| 635 |
+
gr.Markdown("## Emotion Analysis Logs")
|
| 636 |
+
with gr.Row():
|
| 637 |
+
refresh_logs_btn = gr.Button("Refresh Logs")
|
| 638 |
+
download_logs_btn = gr.Button("Download Logs as CSV")
|
| 639 |
+
clear_all_btn = gr.Button("Clear All Data", variant="stop")
|
| 640 |
+
|
| 641 |
+
logs_display = gr.Markdown()
|
| 642 |
+
logs_csv = gr.File(label="Logs Download", visible=False)
|
| 643 |
+
clear_message = gr.Textbox(label="Status", interactive=False)
|
| 644 |
+
|
| 645 |
+
refresh_logs_btn.click(
|
| 646 |
+
view_logs,
|
| 647 |
+
outputs=logs_display
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
download_logs_btn.click(
|
| 651 |
+
download_logs,
|
| 652 |
+
outputs=logs_csv,
|
| 653 |
+
api_name="download_logs"
|
| 654 |
+
).then(
|
| 655 |
+
lambda x: gr.File(visible=x is not None),
|
| 656 |
+
inputs=logs_csv,
|
| 657 |
+
outputs=logs_csv
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
clear_all_btn.click(
|
| 661 |
+
clear_all_data,
|
| 662 |
+
outputs=[clear_message, logs_display, logs_csv]
|
| 663 |
+
).then(
|
| 664 |
+
lambda: update_components("All Emotions", "faces"),
|
| 665 |
+
outputs=[gallery, current_image_paths]
|
| 666 |
+
).then(
|
| 667 |
+
lambda: gr.CheckboxGroup(choices=[], value=[]),
|
| 668 |
+
outputs=selected_images
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
# Combine interfaces
|
| 672 |
+
demo = gr.TabbedInterface(
|
| 673 |
+
[capture_interface, data_interface],
|
| 674 |
+
["Emotion Capture", "Data Management"],
|
| 675 |
+
css=".gradio-container { max-width: 1200px !important }"
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
if __name__ == "__main__":
|
| 679 |
+
demo.launch()
|