Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,15 +9,23 @@ import time
|
|
| 9 |
import numpy as np
|
| 10 |
import logging
|
| 11 |
from glob import glob
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Set up logging
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
-
# Emotion mapping with emojis
|
| 18 |
-
|
| 19 |
-
"angry": "
|
| 20 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
|
| 23 |
# Global variable for processing throttle
|
|
@@ -27,18 +35,24 @@ last_process_time = 0
|
|
| 27 |
BACKENDS = ['mtcnn', 'opencv', 'ssd', 'dlib']
|
| 28 |
|
| 29 |
# Directory to save faces
|
| 30 |
-
|
| 31 |
-
os.makedirs(
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"""Keep only the most recent files to avoid storage issues"""
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def enhance_image(frame):
|
| 44 |
"""Enhance image contrast to improve face detection in poor lighting."""
|
|
@@ -55,6 +69,24 @@ def enhance_image(frame):
|
|
| 55 |
logger.warning(f"Image enhancement failed: {e}")
|
| 56 |
return frame
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def predict_emotion(input_data):
|
| 59 |
global last_process_time
|
| 60 |
|
|
@@ -128,29 +160,23 @@ def predict_emotion(input_data):
|
|
| 128 |
y2 = min(frame.shape[0], y + h + padding)
|
| 129 |
face_region = frame[y1:y2, x1:x2]
|
| 130 |
|
| 131 |
-
# Save face to
|
| 132 |
if face_region.size > 0:
|
| 133 |
-
|
| 134 |
-
face_filename = f"detected_face_{timestamp}_{i}.jpg"
|
| 135 |
-
save_path = os.path.join(SAVE_DIR, face_filename)
|
| 136 |
-
try:
|
| 137 |
-
cv2.imwrite(save_path, cv2.cvtColor(face_region, cv2.COLOR_RGB2BGR))
|
| 138 |
-
logger.info(f"Saved face to: {save_path}")
|
| 139 |
-
except Exception as e:
|
| 140 |
-
logger.error(f"Failed to save face: {e}")
|
| 141 |
|
| 142 |
# Draw bounding box
|
| 143 |
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 144 |
|
| 145 |
# Put emotion text on image
|
| 146 |
-
|
|
|
|
| 147 |
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 148 |
|
| 149 |
# Add to text output
|
| 150 |
-
emotion_text += f"{emotion.title()} {
|
| 151 |
|
| 152 |
# Clean up old files
|
| 153 |
-
clean_old_files(
|
| 154 |
|
| 155 |
if not emotion_text:
|
| 156 |
emotion_text = "No faces detected. Ensure the face is clearly visible."
|
|
@@ -165,19 +191,57 @@ def predict_emotion(input_data):
|
|
| 165 |
return None, f"Error: {str(e)}. Check image format or library installation."
|
| 166 |
|
| 167 |
def get_saved_faces():
|
| 168 |
-
"""Get list of saved face images"""
|
| 169 |
face_files = []
|
| 170 |
-
for
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
| 173 |
return face_files
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
# Create Gradio interface
|
| 176 |
-
with gr.Blocks(title="Emotion Detection with
|
| 177 |
gr.Markdown("""
|
| 178 |
# Real-Time Emotion Detection
|
| 179 |
-
**Use webcam or upload an image to detect emotions**
|
| 180 |
-
*Detected faces are
|
| 181 |
""")
|
| 182 |
|
| 183 |
with gr.Tabs():
|
|
@@ -193,46 +257,103 @@ with gr.Blocks(title="Emotion Detection with Face Saving") as demo:
|
|
| 193 |
upload_text = gr.Textbox(label="Emotion Analysis")
|
| 194 |
uploader.change(predict_emotion, uploader, [upload_output, upload_text])
|
| 195 |
|
| 196 |
-
with gr.TabItem("💾
|
| 197 |
-
gr.Markdown("###
|
|
|
|
| 198 |
with gr.Row():
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
refresh_btn = gr.Button("🔄 Refresh")
|
| 203 |
clear_btn = gr.Button("🗑️ Clear All Saved Faces")
|
| 204 |
|
| 205 |
-
def
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
refresh_btn.click(
|
| 210 |
-
|
| 211 |
-
|
|
|
|
| 212 |
)
|
| 213 |
|
| 214 |
def clear_faces():
|
| 215 |
-
for
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
clear_btn.click(
|
| 223 |
clear_faces,
|
| 224 |
-
outputs=[
|
| 225 |
)
|
| 226 |
|
| 227 |
gr.Button("Clear All").click(
|
| 228 |
-
lambda: [None, None, "", None, None, "", [], []],
|
| 229 |
-
outputs=[webcam, webcam_output, webcam_text, uploader, upload_output, upload_text,
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
-
# Initialize the
|
| 233 |
demo.load(
|
| 234 |
-
|
| 235 |
-
outputs=[
|
| 236 |
)
|
| 237 |
|
| 238 |
if __name__ == "__main__":
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import logging
|
| 11 |
from glob import glob
|
| 12 |
+
import zipfile
|
| 13 |
+
import io
|
| 14 |
+
import shutil
|
| 15 |
|
| 16 |
# Set up logging
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
+
# Emotion mapping with emojis and corresponding folder names
|
| 21 |
+
EMOTION_MAP = {
|
| 22 |
+
"angry": {"emoji": "😠", "folder": "angry"},
|
| 23 |
+
"disgust": {"emoji": "🤢", "folder": "disgust"},
|
| 24 |
+
"fear": {"emoji": "😨", "folder": "fear"},
|
| 25 |
+
"happy": {"emoji": "😄", "folder": "happy"},
|
| 26 |
+
"sad": {"emoji": "😢", "folder": "sad"},
|
| 27 |
+
"surprise": {"emoji": "😲", "folder": "surprise"},
|
| 28 |
+
"neutral": {"emoji": "😐", "folder": "neutral"}
|
| 29 |
}
|
| 30 |
|
| 31 |
# Global variable for processing throttle
|
|
|
|
| 35 |
BACKENDS = ['mtcnn', 'opencv', 'ssd', 'dlib']
|
| 36 |
|
| 37 |
# Directory to save faces
|
| 38 |
+
BASE_SAVE_DIR = "/tmp/emotion_dataset"
|
| 39 |
+
os.makedirs(BASE_SAVE_DIR, exist_ok=True)
|
| 40 |
|
| 41 |
+
# Create emotion subdirectories
|
| 42 |
+
for emotion in EMOTION_MAP.values():
|
| 43 |
+
os.makedirs(os.path.join(BASE_SAVE_DIR, emotion["folder"]), exist_ok=True)
|
| 44 |
+
|
| 45 |
+
def clean_old_files(directory, max_files_per_emotion=50):
|
| 46 |
"""Keep only the most recent files to avoid storage issues"""
|
| 47 |
+
for emotion in EMOTION_MAP.values():
|
| 48 |
+
emotion_dir = os.path.join(directory, emotion["folder"])
|
| 49 |
+
files = glob(os.path.join(emotion_dir, "*.jpg"))
|
| 50 |
+
files.sort(key=os.path.getmtime)
|
| 51 |
+
while len(files) > max_files_per_emotion:
|
| 52 |
+
try:
|
| 53 |
+
os.remove(files.pop(0))
|
| 54 |
+
except Exception as e:
|
| 55 |
+
logger.warning(f"Could not remove old file: {e}")
|
| 56 |
|
| 57 |
def enhance_image(frame):
|
| 58 |
"""Enhance image contrast to improve face detection in poor lighting."""
|
|
|
|
| 69 |
logger.warning(f"Image enhancement failed: {e}")
|
| 70 |
return frame
|
| 71 |
|
| 72 |
+
def save_face_image(face_region, emotion, confidence):
|
| 73 |
+
"""Save face image to appropriate emotion folder with metadata in filename"""
|
| 74 |
+
try:
|
| 75 |
+
emotion_data = EMOTION_MAP.get(emotion, EMOTION_MAP["neutral"])
|
| 76 |
+
folder = emotion_data["folder"]
|
| 77 |
+
timestamp = int(time.time())
|
| 78 |
+
|
| 79 |
+
# Create filename with emotion, confidence, and timestamp
|
| 80 |
+
filename = f"{emotion}_{confidence:.1f}%_{timestamp}.jpg"
|
| 81 |
+
save_path = os.path.join(BASE_SAVE_DIR, folder, filename)
|
| 82 |
+
|
| 83 |
+
cv2.imwrite(save_path, cv2.cvtColor(face_region, cv2.COLOR_RGB2BGR))
|
| 84 |
+
logger.info(f"Saved {emotion} face to: {save_path}")
|
| 85 |
+
return save_path
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.error(f"Failed to save face: {e}")
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
def predict_emotion(input_data):
|
| 91 |
global last_process_time
|
| 92 |
|
|
|
|
| 160 |
y2 = min(frame.shape[0], y + h + padding)
|
| 161 |
face_region = frame[y1:y2, x1:x2]
|
| 162 |
|
| 163 |
+
# Save face to appropriate emotion folder if valid region
|
| 164 |
if face_region.size > 0:
|
| 165 |
+
save_face_image(face_region, emotion, confidence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
# Draw bounding box
|
| 168 |
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 169 |
|
| 170 |
# Put emotion text on image
|
| 171 |
+
emoji = EMOTION_MAP.get(emotion, {}).get("emoji", "")
|
| 172 |
+
cv2.putText(frame, f"{emotion} {emoji}",
|
| 173 |
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
| 174 |
|
| 175 |
# Add to text output
|
| 176 |
+
emotion_text += f"{emotion.title()} {emoji}: {confidence:.1f}%\n"
|
| 177 |
|
| 178 |
# Clean up old files
|
| 179 |
+
clean_old_files(BASE_SAVE_DIR)
|
| 180 |
|
| 181 |
if not emotion_text:
|
| 182 |
emotion_text = "No faces detected. Ensure the face is clearly visible."
|
|
|
|
| 191 |
return None, f"Error: {str(e)}. Check image format or library installation."
|
| 192 |
|
| 193 |
def get_saved_faces():
|
| 194 |
+
"""Get list of saved face images from all emotion folders"""
|
| 195 |
face_files = []
|
| 196 |
+
for emotion in EMOTION_MAP.values():
|
| 197 |
+
emotion_dir = os.path.join(BASE_SAVE_DIR, emotion["folder"])
|
| 198 |
+
for f in os.listdir(emotion_dir):
|
| 199 |
+
if f.endswith(".jpg"):
|
| 200 |
+
face_files.append(os.path.join(emotion_dir, f))
|
| 201 |
return face_files
|
| 202 |
|
| 203 |
+
def create_zip_file():
|
| 204 |
+
"""Create a zip file containing all saved faces organized by emotion"""
|
| 205 |
+
face_files = get_saved_faces()
|
| 206 |
+
if not face_files:
|
| 207 |
+
return None
|
| 208 |
+
|
| 209 |
+
zip_buffer = io.BytesIO()
|
| 210 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
| 211 |
+
for face_file in face_files:
|
| 212 |
+
# Maintain directory structure in zip
|
| 213 |
+
relative_path = os.path.relpath(face_file, BASE_SAVE_DIR)
|
| 214 |
+
zip_file.write(face_file, relative_path)
|
| 215 |
+
|
| 216 |
+
zip_buffer.seek(0)
|
| 217 |
+
return zip_buffer
|
| 218 |
+
|
| 219 |
+
def create_emotion_zip(emotion):
|
| 220 |
+
"""Create a zip file for a specific emotion"""
|
| 221 |
+
emotion_data = EMOTION_MAP.get(emotion)
|
| 222 |
+
if not emotion_data:
|
| 223 |
+
return None
|
| 224 |
+
|
| 225 |
+
emotion_dir = os.path.join(BASE_SAVE_DIR, emotion_data["folder"])
|
| 226 |
+
face_files = [os.path.join(emotion_dir, f) for f in os.listdir(emotion_dir) if f.endswith(".jpg")]
|
| 227 |
+
|
| 228 |
+
if not face_files:
|
| 229 |
+
return None
|
| 230 |
+
|
| 231 |
+
zip_buffer = io.BytesIO()
|
| 232 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
| 233 |
+
for face_file in face_files:
|
| 234 |
+
zip_file.write(face_file, os.path.basename(face_file))
|
| 235 |
+
|
| 236 |
+
zip_buffer.seek(0)
|
| 237 |
+
return zip_buffer
|
| 238 |
+
|
| 239 |
# Create Gradio interface
|
| 240 |
+
with gr.Blocks(title="Emotion Detection with Dataset Creation") as demo:
|
| 241 |
gr.Markdown("""
|
| 242 |
# Real-Time Emotion Detection
|
| 243 |
+
**Use webcam or upload an image to detect emotions and build a training dataset**
|
| 244 |
+
*Detected faces are automatically classified by emotion and saved in organized folders*
|
| 245 |
""")
|
| 246 |
|
| 247 |
with gr.Tabs():
|
|
|
|
| 257 |
upload_text = gr.Textbox(label="Emotion Analysis")
|
| 258 |
uploader.change(predict_emotion, uploader, [upload_output, upload_text])
|
| 259 |
|
| 260 |
+
with gr.TabItem("💾 Emotion Dataset"):
|
| 261 |
+
gr.Markdown("### Classified Faces by Emotion")
|
| 262 |
+
|
| 263 |
with gr.Row():
|
| 264 |
+
with gr.Column():
|
| 265 |
+
emotion_selector = gr.Dropdown(
|
| 266 |
+
choices=list(EMOTION_MAP.keys()),
|
| 267 |
+
label="Select Emotion to View/Download",
|
| 268 |
+
value="happy"
|
| 269 |
+
)
|
| 270 |
+
emotion_gallery = gr.Gallery(label="Selected Emotion Faces")
|
| 271 |
+
emotion_zip = gr.File(label="Download Emotion as ZIP", visible=False)
|
| 272 |
+
download_emotion_btn = gr.Button("📦 Download This Emotion")
|
| 273 |
+
|
| 274 |
+
with gr.Column():
|
| 275 |
+
all_gallery = gr.Gallery(label="All Detected Faces")
|
| 276 |
+
all_zip = gr.File(label="Download All as ZIP", visible=False)
|
| 277 |
+
download_all_btn = gr.Button("📦 Download Entire Dataset")
|
| 278 |
|
| 279 |
refresh_btn = gr.Button("🔄 Refresh")
|
| 280 |
clear_btn = gr.Button("🗑️ Clear All Saved Faces")
|
| 281 |
|
| 282 |
+
def update_emotion_display(emotion):
|
| 283 |
+
emotion_data = EMOTION_MAP.get(emotion, {})
|
| 284 |
+
if not emotion_data:
|
| 285 |
+
return [], gr.File(visible=False)
|
| 286 |
+
|
| 287 |
+
emotion_dir = os.path.join(BASE_SAVE_DIR, emotion_data["folder"])
|
| 288 |
+
face_files = [os.path.join(emotion_dir, f) for f in os.listdir(emotion_dir) if f.endswith(".jpg")]
|
| 289 |
+
return face_files, gr.File(visible=False)
|
| 290 |
+
|
| 291 |
+
def update_all_display():
|
| 292 |
+
return get_saved_faces(), gr.File(visible=False)
|
| 293 |
+
|
| 294 |
+
def download_selected_emotion(emotion):
|
| 295 |
+
zip_file = create_emotion_zip(emotion)
|
| 296 |
+
if zip_file:
|
| 297 |
+
return gr.File(value=zip_file, visible=True,
|
| 298 |
+
label=f"Download {emotion.capitalize()} Faces")
|
| 299 |
+
return gr.File(visible=False)
|
| 300 |
+
|
| 301 |
+
def download_full_dataset():
|
| 302 |
+
zip_file = create_zip_file()
|
| 303 |
+
if zip_file:
|
| 304 |
+
return gr.File(value=zip_file, visible=True,
|
| 305 |
+
label="Download Entire Dataset")
|
| 306 |
+
return gr.File(visible=False)
|
| 307 |
+
|
| 308 |
+
emotion_selector.change(
|
| 309 |
+
update_emotion_display,
|
| 310 |
+
inputs=[emotion_selector],
|
| 311 |
+
outputs=[emotion_gallery, emotion_zip]
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
download_emotion_btn.click(
|
| 315 |
+
download_selected_emotion,
|
| 316 |
+
inputs=[emotion_selector],
|
| 317 |
+
outputs=[emotion_zip]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
download_all_btn.click(
|
| 321 |
+
download_full_dataset,
|
| 322 |
+
outputs=[all_zip]
|
| 323 |
+
)
|
| 324 |
|
| 325 |
refresh_btn.click(
|
| 326 |
+
lambda: [update_emotion_display(emotion_selector.value),
|
| 327 |
+
update_all_display()],
|
| 328 |
+
outputs=[emotion_gallery, emotion_zip, all_gallery, all_zip]
|
| 329 |
)
|
| 330 |
|
| 331 |
def clear_faces():
|
| 332 |
+
for emotion in EMOTION_MAP.values():
|
| 333 |
+
emotion_dir = os.path.join(BASE_SAVE_DIR, emotion["folder"])
|
| 334 |
+
for f in os.listdir(emotion_dir):
|
| 335 |
+
if f.endswith(".jpg"):
|
| 336 |
+
try:
|
| 337 |
+
os.remove(os.path.join(emotion_dir, f))
|
| 338 |
+
except:
|
| 339 |
+
pass
|
| 340 |
+
return [], gr.File(visible=False), [], gr.File(visible=False)
|
| 341 |
|
| 342 |
clear_btn.click(
|
| 343 |
clear_faces,
|
| 344 |
+
outputs=[emotion_gallery, emotion_zip, all_gallery, all_zip]
|
| 345 |
)
|
| 346 |
|
| 347 |
gr.Button("Clear All").click(
|
| 348 |
+
lambda: [None, None, "", None, None, "", [], gr.File(visible=False), [], gr.File(visible=False)],
|
| 349 |
+
outputs=[webcam, webcam_output, webcam_text, uploader, upload_output, upload_text,
|
| 350 |
+
emotion_gallery, emotion_zip, all_gallery, all_zip]
|
| 351 |
)
|
| 352 |
|
| 353 |
+
# Initialize the display
|
| 354 |
demo.load(
|
| 355 |
+
lambda: [update_emotion_display(emotion_selector.value), update_all_display()],
|
| 356 |
+
outputs=[emotion_gallery, emotion_zip, all_gallery, all_zip]
|
| 357 |
)
|
| 358 |
|
| 359 |
if __name__ == "__main__":
|