Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
from streamlit_player import st_player
|
| 5 |
+
from transformers import AutoModelForCTC, Wav2Vec2Processor
|
| 6 |
+
from streaming import ffmpeg_stream
|
| 7 |
+
|
| 8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
+
player_options = {
|
| 10 |
+
"events": ["onProgress"],
|
| 11 |
+
"progress_interval": 200,
|
| 12 |
+
"volume": 1.0,
|
| 13 |
+
"playing": True,
|
| 14 |
+
"loop": False,
|
| 15 |
+
"controls": False,
|
| 16 |
+
"muted": False,
|
| 17 |
+
"config": {"youtube": {"playerVars": {"start": 1}}},
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# disable rapid fading in and out on `st.code` updates
|
| 21 |
+
st.markdown("<style>.element-container{opacity:1 !important}</style>", unsafe_allow_html=True)
|
| 22 |
+
|
| 23 |
+
@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
|
| 24 |
+
def load_model(model_path="facebook/wav2vec2-large-robust-ft-swbd-300h"):
|
| 25 |
+
processor = Wav2Vec2Processor.from_pretrained(model_path)
|
| 26 |
+
model = AutoModelForCTC.from_pretrained(model_path).to(device)
|
| 27 |
+
return processor, model
|
| 28 |
+
|
| 29 |
+
processor, model = load_model()
|
| 30 |
+
|
| 31 |
+
def stream_text(url, chunk_duration_ms, pad_duration_ms):
|
| 32 |
+
sampling_rate = processor.feature_extractor.sampling_rate
|
| 33 |
+
|
| 34 |
+
# calculate the length of logits to cut from the sides of the output to account for input padding
|
| 35 |
+
output_pad_len = model._get_feat_extract_output_lengths(int(sampling_rate * pad_duration_ms / 1000))
|
| 36 |
+
|
| 37 |
+
# define the audio chunk generator
|
| 38 |
+
stream = ffmpeg_stream(url, sampling_rate, chunk_duration_ms=chunk_duration_ms, pad_duration_ms=pad_duration_ms)
|
| 39 |
+
|
| 40 |
+
leftover_text = ""
|
| 41 |
+
for i, chunk in enumerate(stream):
|
| 42 |
+
input_values = processor(chunk, sampling_rate=sampling_rate, return_tensors="pt").input_values
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
logits = model(input_values.to(device)).logits[0]
|
| 46 |
+
if i > 0:
|
| 47 |
+
logits = logits[output_pad_len : len(logits) - output_pad_len]
|
| 48 |
+
else: # don't count padding at the start of the clip
|
| 49 |
+
logits = logits[: len(logits) - output_pad_len]
|
| 50 |
+
|
| 51 |
+
predicted_ids = torch.argmax(logits, dim=-1).cpu().tolist()
|
| 52 |
+
if processor.decode(predicted_ids).strip():
|
| 53 |
+
leftover_ids = processor.tokenizer.encode(leftover_text)
|
| 54 |
+
# concat the last word (or its part) from the last frame with the current text
|
| 55 |
+
text = processor.decode(leftover_ids + predicted_ids)
|
| 56 |
+
# don't return the last word in case it's just partially recognized
|
| 57 |
+
text, leftover_text = text.rsplit(" ", 1)
|
| 58 |
+
yield text
|
| 59 |
+
else:
|
| 60 |
+
yield leftover_text
|
| 61 |
+
leftover_text = ""
|
| 62 |
+
yield leftover_text
|
| 63 |
+
|
| 64 |
+
def main():
|
| 65 |
+
state = st.session_state
|
| 66 |
+
st.header("Video ASR Streamlit from Youtube Link")
|
| 67 |
+
|
| 68 |
+
with st.form(key="inputs_form"):
|
| 69 |
+
|
| 70 |
+
# Our worlds best teachers on subjects of AI, Cognitive, Neuroscience for our Behavioral and Medical Health
|
| 71 |
+
ytJoschaBach="https://youtu.be/cC1HszE5Hcw?list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&t=8984"
|
| 72 |
+
ytSamHarris="https://www.youtube.com/watch?v=4dC_nRYIDZU&list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&index=2"
|
| 73 |
+
ytJohnAbramson="https://www.youtube.com/watch?v=arrokG3wCdE&list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&index=3"
|
| 74 |
+
ytElonMusk="https://www.youtube.com/watch?v=DxREm3s1scA&list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&index=4"
|
| 75 |
+
ytJeffreyShainline="https://www.youtube.com/watch?v=EwueqdgIvq4&list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&index=5"
|
| 76 |
+
ytJeffHawkins="https://www.youtube.com/watch?v=Z1KwkpTUbkg&list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&index=6"
|
| 77 |
+
ytSamHarris="https://youtu.be/Ui38ZzTymDY?list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L"
|
| 78 |
+
ytSamHarris="https://youtu.be/4dC_nRYIDZU?list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&t=7809"
|
| 79 |
+
ytSamHarris="https://youtu.be/4dC_nRYIDZU?list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&t=7809"
|
| 80 |
+
ytSamHarris="https://youtu.be/4dC_nRYIDZU?list=PLHgX2IExbFouJoqEr8JMF5MbZSbyC91-L&t=7809"
|
| 81 |
+
ytTimelapseAI="https://www.youtube.com/watch?v=63yr9dlI0cU&list=PLHgX2IExbFovQybyfltywXnqZi5YvaSS-"
|
| 82 |
+
state.youtube_url = st.text_input("YouTube URL", ytTimelapseAI)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
state.chunk_duration_ms = st.slider("Audio chunk duration (ms)", 2000, 10000, 3000, 100)
|
| 86 |
+
state.pad_duration_ms = st.slider("Padding duration (ms)", 100, 5000, 1000, 100)
|
| 87 |
+
submit_button = st.form_submit_button(label="Submit")
|
| 88 |
+
|
| 89 |
+
if submit_button or "asr_stream" not in state:
|
| 90 |
+
# a hack to update the video player on value changes
|
| 91 |
+
state.youtube_url = (
|
| 92 |
+
state.youtube_url.split("&hash=")[0]
|
| 93 |
+
+ f"&hash={state.chunk_duration_ms}-{state.pad_duration_ms}"
|
| 94 |
+
)
|
| 95 |
+
state.asr_stream = stream_text(
|
| 96 |
+
state.youtube_url, state.chunk_duration_ms, state.pad_duration_ms
|
| 97 |
+
)
|
| 98 |
+
state.chunks_taken = 0
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
state.lines = deque([], maxlen=100) # limit to the last n lines of subs
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
player = st_player(state.youtube_url, **player_options, key="youtube_player")
|
| 105 |
+
|
| 106 |
+
if "asr_stream" in state and player.data and player.data["played"] < 1.0:
|
| 107 |
+
# check how many seconds were played, and if more than processed - write the next text chunk
|
| 108 |
+
processed_seconds = state.chunks_taken * (state.chunk_duration_ms / 1000)
|
| 109 |
+
if processed_seconds < player.data["playedSeconds"]:
|
| 110 |
+
text = next(state.asr_stream)
|
| 111 |
+
state.lines.append(text)
|
| 112 |
+
state.chunks_taken += 1
|
| 113 |
+
if "lines" in state:
|
| 114 |
+
# print the lines of subs
|
| 115 |
+
st.code("\n".join(state.lines))
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
main()
|