Spaces:
Running
on
Zero
Running
on
Zero
Avijit Ghosh
commited on
Commit
·
f56644b
1
Parent(s):
64fe77f
playing around with model options
Browse files- app copy.py +149 -0
- app.py +48 -19
- test.ipynb +277 -0
app copy.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import AutoPipelineForText2Image
|
| 4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import stone
|
| 7 |
+
import requests
|
| 8 |
+
import io
|
| 9 |
+
import os
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import spaces
|
| 12 |
+
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
import numpy as np
|
| 15 |
+
from matplotlib.colors import hex2color
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
|
| 19 |
+
"stabilityai/sdxl-turbo",
|
| 20 |
+
torch_dtype=torch.float16,
|
| 21 |
+
variant="fp16",
|
| 22 |
+
)
|
| 23 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@spaces.GPU
|
| 27 |
+
def getimgen(prompt):
|
| 28 |
+
|
| 29 |
+
return pipeline_text2image(
|
| 30 |
+
prompt=prompt,
|
| 31 |
+
guidance_scale=0.0,
|
| 32 |
+
num_inference_steps=2
|
| 33 |
+
).images[0]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 37 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 38 |
+
"Salesforce/blip-image-captioning-large",
|
| 39 |
+
torch_dtype=torch.float16
|
| 40 |
+
).to("cuda")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@spaces.GPU
|
| 44 |
+
def blip_caption_image(image, prefix):
|
| 45 |
+
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
| 46 |
+
out = blip_model.generate(**inputs)
|
| 47 |
+
return blip_processor.decode(out[0], skip_special_tokens=True)
|
| 48 |
+
|
| 49 |
+
def genderfromcaption(caption):
|
| 50 |
+
cc = caption.split()
|
| 51 |
+
if "man" in cc or "boy" in cc:
|
| 52 |
+
return "Man"
|
| 53 |
+
elif "woman" in cc or "girl" in cc:
|
| 54 |
+
return "Woman"
|
| 55 |
+
return "Unsure"
|
| 56 |
+
|
| 57 |
+
def genderplot(genlist):
|
| 58 |
+
order = ["Man", "Woman", "Unsure"]
|
| 59 |
+
|
| 60 |
+
# Sort the list based on the order of keys
|
| 61 |
+
words = sorted(genlist, key=lambda x: order.index(x))
|
| 62 |
+
|
| 63 |
+
# Define colors for each category
|
| 64 |
+
colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
|
| 65 |
+
|
| 66 |
+
# Map each word to its corresponding color
|
| 67 |
+
word_colors = [colors[word] for word in words]
|
| 68 |
+
|
| 69 |
+
# Plot the colors in a grid with reduced spacing
|
| 70 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
| 71 |
+
|
| 72 |
+
# Adjust spacing between subplots
|
| 73 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
| 74 |
+
|
| 75 |
+
for i, ax in enumerate(axes.flat):
|
| 76 |
+
ax.set_axis_off()
|
| 77 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
|
| 78 |
+
|
| 79 |
+
return fig
|
| 80 |
+
|
| 81 |
+
def skintoneplot(hex_codes):
|
| 82 |
+
# Convert hex codes to RGB values
|
| 83 |
+
rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
|
| 84 |
+
|
| 85 |
+
# Calculate luminance for each color
|
| 86 |
+
luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
|
| 87 |
+
|
| 88 |
+
# Sort hex codes based on luminance in descending order (dark to light)
|
| 89 |
+
sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
|
| 90 |
+
|
| 91 |
+
# Plot the colors in a grid with reduced spacing
|
| 92 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
| 93 |
+
|
| 94 |
+
# Adjust spacing between subplots
|
| 95 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
| 96 |
+
|
| 97 |
+
for i, ax in enumerate(axes.flat):
|
| 98 |
+
ax.set_axis_off()
|
| 99 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
| 100 |
+
|
| 101 |
+
return fig
|
| 102 |
+
|
| 103 |
+
@spaces.GPU
|
| 104 |
+
def generate_images_plots(prompt):
|
| 105 |
+
foldername = "temp"
|
| 106 |
+
# Generate 10 images
|
| 107 |
+
images = [getimgen(prompt) for _ in range(10)]
|
| 108 |
+
|
| 109 |
+
Path(foldername).mkdir(parents=True, exist_ok=True)
|
| 110 |
+
|
| 111 |
+
genders = []
|
| 112 |
+
skintones = []
|
| 113 |
+
|
| 114 |
+
for image, i in zip(images, range(10)):
|
| 115 |
+
prompt_prefix = "photo of a "
|
| 116 |
+
caption = blip_caption_image(image, prefix=prompt_prefix)
|
| 117 |
+
image.save(f"{foldername}/image_{i}.png")
|
| 118 |
+
try:
|
| 119 |
+
skintoneres = stone.process(f"{foldername}/image_{i}.png", return_report_image=False)
|
| 120 |
+
tone = skintoneres['faces'][0]['dominant_colors'][0]['color']
|
| 121 |
+
skintones.append(tone)
|
| 122 |
+
except:
|
| 123 |
+
skintones.append(None)
|
| 124 |
+
|
| 125 |
+
genders.append(genderfromcaption(caption))
|
| 126 |
+
|
| 127 |
+
print(genders, skintones)
|
| 128 |
+
|
| 129 |
+
return images, skintoneplot(skintones), genderplot(genders)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API") as demo:
|
| 133 |
+
|
| 134 |
+
gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
|
| 135 |
+
|
| 136 |
+
prompt = gr.Textbox(label="Enter the Prompt")
|
| 137 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
| 138 |
+
columns=[5], rows=[2], object_fit="contain", height="auto")
|
| 139 |
+
btn = gr.Button("Generate images", scale=0)
|
| 140 |
+
with gr.Row(equal_height=True):
|
| 141 |
+
skinplot = gr.Plot(label="Skin Tone")
|
| 142 |
+
genplot = gr.Plot(label="Gender")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
btn.click(generate_images_plots, inputs = prompt, outputs = [gallery, skinplot, genplot])
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
demo.launch(debug=True)
|
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import AutoPipelineForText2Image
|
|
|
|
| 4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 5 |
from pathlib import Path
|
| 6 |
import stone
|
|
@@ -13,16 +14,41 @@ import spaces
|
|
| 13 |
import matplotlib.pyplot as plt
|
| 14 |
import numpy as np
|
| 15 |
from matplotlib.colors import hex2color
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
| 24 |
|
| 25 |
-
|
| 26 |
@spaces.GPU
|
| 27 |
def getimgen(prompt):
|
| 28 |
|
|
@@ -32,14 +58,12 @@ def getimgen(prompt):
|
|
| 32 |
num_inference_steps=2
|
| 33 |
).images[0]
|
| 34 |
|
| 35 |
-
|
| 36 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 37 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 38 |
"Salesforce/blip-image-captioning-large",
|
| 39 |
torch_dtype=torch.float16
|
| 40 |
).to("cuda")
|
| 41 |
|
| 42 |
-
|
| 43 |
@spaces.GPU
|
| 44 |
def blip_caption_image(image, prefix):
|
| 45 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
|
@@ -101,7 +125,15 @@ def skintoneplot(hex_codes):
|
|
| 101 |
return fig
|
| 102 |
|
| 103 |
@spaces.GPU
|
| 104 |
-
def generate_images_plots(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
foldername = "temp"
|
| 106 |
# Generate 10 images
|
| 107 |
images = [getimgen(prompt) for _ in range(10)]
|
|
@@ -128,11 +160,11 @@ def generate_images_plots(prompt):
|
|
| 128 |
|
| 129 |
return images, skintoneplot(skintones), genderplot(genders)
|
| 130 |
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
|
| 135 |
|
|
|
|
| 136 |
prompt = gr.Textbox(label="Enter the Prompt")
|
| 137 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
| 138 |
columns=[5], rows=[2], object_fit="contain", height="auto")
|
|
@@ -141,9 +173,6 @@ with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API")
|
|
| 141 |
skinplot = gr.Plot(label="Skin Tone")
|
| 142 |
genplot = gr.Plot(label="Gender")
|
| 143 |
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
# from diffusers import AutoPipelineForText2Image
|
| 4 |
+
from diffusers import DiffusionPipeline
|
| 5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 6 |
from pathlib import Path
|
| 7 |
import stone
|
|
|
|
| 14 |
import matplotlib.pyplot as plt
|
| 15 |
import numpy as np
|
| 16 |
from matplotlib.colors import hex2color
|
| 17 |
+
from huggingface_hub import list_models
|
| 18 |
+
|
| 19 |
+
# Fetch models from Hugging Face Hub
|
| 20 |
+
models = list_models(task="text-to-image")
|
| 21 |
+
## Step 1: Filter the models
|
| 22 |
+
filtered_models = [model for model in models if model.library_name == "diffusers"]
|
| 23 |
+
|
| 24 |
+
# Step 2: Sort the filtered models by downloads in descending order
|
| 25 |
+
sorted_models = sorted(filtered_models, key=lambda x: x.downloads, reverse=True)
|
| 26 |
+
|
| 27 |
+
# Step 3: Select the top 5 models with only one model per company
|
| 28 |
+
top_models = []
|
| 29 |
+
companies_seen = set()
|
| 30 |
+
|
| 31 |
+
for model in sorted_models:
|
| 32 |
+
company_name = model.id.split('/')[0] # Assuming the company name is the first part of the model id
|
| 33 |
+
if company_name not in companies_seen:
|
| 34 |
+
top_models.append(model)
|
| 35 |
+
companies_seen.add(company_name)
|
| 36 |
+
if len(top_models) == 5:
|
| 37 |
+
break
|
| 38 |
+
|
| 39 |
+
# Get the ids of the top models
|
| 40 |
+
model_names = [model.id for model in top_models]
|
| 41 |
+
|
| 42 |
+
print(model_names)
|
| 43 |
+
|
| 44 |
+
# Initial pipeline setup
|
| 45 |
+
default_model = model_names[0]
|
| 46 |
+
print(default_model)
|
| 47 |
+
pipeline_text2image = DiffusionPipeline.from_pretrained(
|
| 48 |
+
default_model
|
| 49 |
)
|
| 50 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
| 51 |
|
|
|
|
| 52 |
@spaces.GPU
|
| 53 |
def getimgen(prompt):
|
| 54 |
|
|
|
|
| 58 |
num_inference_steps=2
|
| 59 |
).images[0]
|
| 60 |
|
|
|
|
| 61 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 62 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 63 |
"Salesforce/blip-image-captioning-large",
|
| 64 |
torch_dtype=torch.float16
|
| 65 |
).to("cuda")
|
| 66 |
|
|
|
|
| 67 |
@spaces.GPU
|
| 68 |
def blip_caption_image(image, prefix):
|
| 69 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
|
|
|
| 125 |
return fig
|
| 126 |
|
| 127 |
@spaces.GPU
|
| 128 |
+
def generate_images_plots(prompt, model_name):
|
| 129 |
+
print(model_name)
|
| 130 |
+
# Update the pipeline to use the selected model
|
| 131 |
+
global pipeline_text2image
|
| 132 |
+
pipeline_text2image = DiffusionPipeline.from_pretrained(
|
| 133 |
+
model_name
|
| 134 |
+
)
|
| 135 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
| 136 |
+
|
| 137 |
foldername = "temp"
|
| 138 |
# Generate 10 images
|
| 139 |
images = [getimgen(prompt) for _ in range(10)]
|
|
|
|
| 160 |
|
| 161 |
return images, skintoneplot(skintones), genderplot(genders)
|
| 162 |
|
| 163 |
+
with gr.Blocks(title = "Skin Tone and Gender bias in Text to Image Models") as demo:
|
| 164 |
|
| 165 |
+
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names, value=default_model)
|
| 168 |
prompt = gr.Textbox(label="Enter the Prompt")
|
| 169 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
| 170 |
columns=[5], rows=[2], object_fit="contain", height="auto")
|
|
|
|
| 173 |
skinplot = gr.Plot(label="Skin Tone")
|
| 174 |
genplot = gr.Plot(label="Gender")
|
| 175 |
|
| 176 |
+
btn.click(generate_images_plots, inputs=[prompt, model_dropdown], outputs=[gallery, skinplot, genplot])
|
| 177 |
|
| 178 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
test.ipynb
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from diffusers import AutoPipelineForText2Image\n",
|
| 10 |
+
"import torch"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 7,
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"outputs": [
|
| 18 |
+
{
|
| 19 |
+
"name": "stderr",
|
| 20 |
+
"output_type": "stream",
|
| 21 |
+
"text": [
|
| 22 |
+
"vae/diffusion_pytorch_model.safetensors not found\n"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"data": {
|
| 27 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 28 |
+
"model_id": "1822a5456c3244b6b5831817d6d0ebbc",
|
| 29 |
+
"version_major": 2,
|
| 30 |
+
"version_minor": 0
|
| 31 |
+
},
|
| 32 |
+
"text/plain": [
|
| 33 |
+
"Fetching 15 files: 0%| | 0/15 [00:00<?, ?it/s]"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"output_type": "display_data"
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"data": {
|
| 41 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 42 |
+
"model_id": "6232a45e054e4439a822345b4744b0b8",
|
| 43 |
+
"version_major": 2,
|
| 44 |
+
"version_minor": 0
|
| 45 |
+
},
|
| 46 |
+
"text/plain": [
|
| 47 |
+
"tokenizer/special_tokens_map.json: 0%| | 0.00/472 [00:00<?, ?B/s]"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"output_type": "display_data"
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"data": {
|
| 55 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 56 |
+
"model_id": "da77db92e94e482b83b679b698630be0",
|
| 57 |
+
"version_major": 2,
|
| 58 |
+
"version_minor": 0
|
| 59 |
+
},
|
| 60 |
+
"text/plain": [
|
| 61 |
+
"(…)ature_extractor/preprocessor_config.json: 0%| | 0.00/342 [00:00<?, ?B/s]"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"output_type": "display_data"
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"data": {
|
| 69 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 70 |
+
"model_id": "1f73d5e96b8b4c218433d8c9ea66b4b1",
|
| 71 |
+
"version_major": 2,
|
| 72 |
+
"version_minor": 0
|
| 73 |
+
},
|
| 74 |
+
"text/plain": [
|
| 75 |
+
"safety_checker/config.json: 0%| | 0.00/4.80k [00:00<?, ?B/s]"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"output_type": "display_data"
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"data": {
|
| 83 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 84 |
+
"model_id": "4eb1d6d2c98c46e6940129236928b9d8",
|
| 85 |
+
"version_major": 2,
|
| 86 |
+
"version_minor": 0
|
| 87 |
+
},
|
| 88 |
+
"text/plain": [
|
| 89 |
+
"text_encoder/config.json: 0%| | 0.00/589 [00:00<?, ?B/s]"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"output_type": "display_data"
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"data": {
|
| 97 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 98 |
+
"model_id": "8455fd4bd49e462e94a15614968edeeb",
|
| 99 |
+
"version_major": 2,
|
| 100 |
+
"version_minor": 0
|
| 101 |
+
},
|
| 102 |
+
"text/plain": [
|
| 103 |
+
"tokenizer/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s]"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"output_type": "display_data"
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"data": {
|
| 111 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 112 |
+
"model_id": "85c9b8ddc3084051b9de01a1cc4b346f",
|
| 113 |
+
"version_major": 2,
|
| 114 |
+
"version_minor": 0
|
| 115 |
+
},
|
| 116 |
+
"text/plain": [
|
| 117 |
+
"scheduler/scheduler_config.json: 0%| | 0.00/284 [00:00<?, ?B/s]"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"output_type": "display_data"
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"data": {
|
| 125 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 126 |
+
"model_id": "f01d373de73e49198ed9a509ff884d83",
|
| 127 |
+
"version_major": 2,
|
| 128 |
+
"version_minor": 0
|
| 129 |
+
},
|
| 130 |
+
"text/plain": [
|
| 131 |
+
"unet/config.json: 0%| | 0.00/789 [00:00<?, ?B/s]"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"output_type": "display_data"
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"data": {
|
| 139 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 140 |
+
"model_id": "2dad6d09e0b944cb91e5e68d374ad283",
|
| 141 |
+
"version_major": 2,
|
| 142 |
+
"version_minor": 0
|
| 143 |
+
},
|
| 144 |
+
"text/plain": [
|
| 145 |
+
"tokenizer/vocab.json: 0%| | 0.00/1.06M [00:00<?, ?B/s]"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"output_type": "display_data"
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"data": {
|
| 153 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 154 |
+
"model_id": "69c41904a7dd439296a3a56c0a37acda",
|
| 155 |
+
"version_major": 2,
|
| 156 |
+
"version_minor": 0
|
| 157 |
+
},
|
| 158 |
+
"text/plain": [
|
| 159 |
+
"vae/config.json: 0%| | 0.00/592 [00:00<?, ?B/s]"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"output_type": "display_data"
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"data": {
|
| 167 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 168 |
+
"model_id": "a3c8d76377f9445e81d73336d2b70535",
|
| 169 |
+
"version_major": 2,
|
| 170 |
+
"version_minor": 0
|
| 171 |
+
},
|
| 172 |
+
"text/plain": [
|
| 173 |
+
"safety_checker/pytorch_model.bin: 0%| | 0.00/608M [00:00<?, ?B/s]"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"output_type": "display_data"
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"data": {
|
| 181 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 182 |
+
"model_id": "67a6fd052c734c69950ce38c7503821a",
|
| 183 |
+
"version_major": 2,
|
| 184 |
+
"version_minor": 0
|
| 185 |
+
},
|
| 186 |
+
"text/plain": [
|
| 187 |
+
"text_encoder/pytorch_model.bin: 0%| | 0.00/246M [00:00<?, ?B/s]"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
"metadata": {},
|
| 191 |
+
"output_type": "display_data"
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"data": {
|
| 195 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 196 |
+
"model_id": "e7de26e3010f484bb698f62dfae0a255",
|
| 197 |
+
"version_major": 2,
|
| 198 |
+
"version_minor": 0
|
| 199 |
+
},
|
| 200 |
+
"text/plain": [
|
| 201 |
+
"tokenizer/tokenizer_config.json: 0%| | 0.00/805 [00:00<?, ?B/s]"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
"metadata": {},
|
| 205 |
+
"output_type": "display_data"
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"data": {
|
| 209 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 210 |
+
"model_id": "d4080d04c64642a09514fd7570ba0cde",
|
| 211 |
+
"version_major": 2,
|
| 212 |
+
"version_minor": 0
|
| 213 |
+
},
|
| 214 |
+
"text/plain": [
|
| 215 |
+
"unet/diffusion_pytorch_model.bin: 0%| | 0.00/1.72G [00:00<?, ?B/s]"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
"metadata": {},
|
| 219 |
+
"output_type": "display_data"
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"data": {
|
| 223 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 224 |
+
"model_id": "402fd6d5c4054bdfae85f085c538ebac",
|
| 225 |
+
"version_major": 2,
|
| 226 |
+
"version_minor": 0
|
| 227 |
+
},
|
| 228 |
+
"text/plain": [
|
| 229 |
+
"vae/diffusion_pytorch_model.bin: 0%| | 0.00/167M [00:00<?, ?B/s]"
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"output_type": "display_data"
|
| 234 |
+
}
|
| 235 |
+
],
|
| 236 |
+
"source": [
|
| 237 |
+
"# model = \"CompVis/ldm-text2im-large-256\"\n",
|
| 238 |
+
"model = \"sd-dreambooth-library/colorful-ball\"\n",
|
| 239 |
+
"# model = \"stabilityai/sdxl-turbo\"\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"pipeline_text2image = AutoPipelineForText2Image.from_pretrained(\n",
|
| 242 |
+
" model,\n",
|
| 243 |
+
" torch_dtype=torch.float16,\n",
|
| 244 |
+
")\n",
|
| 245 |
+
"pipeline_text2image = pipeline_text2image.to(\"cuda\")"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": null,
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"outputs": [],
|
| 253 |
+
"source": []
|
| 254 |
+
}
|
| 255 |
+
],
|
| 256 |
+
"metadata": {
|
| 257 |
+
"kernelspec": {
|
| 258 |
+
"display_name": "gradio",
|
| 259 |
+
"language": "python",
|
| 260 |
+
"name": "python3"
|
| 261 |
+
},
|
| 262 |
+
"language_info": {
|
| 263 |
+
"codemirror_mode": {
|
| 264 |
+
"name": "ipython",
|
| 265 |
+
"version": 3
|
| 266 |
+
},
|
| 267 |
+
"file_extension": ".py",
|
| 268 |
+
"mimetype": "text/x-python",
|
| 269 |
+
"name": "python",
|
| 270 |
+
"nbconvert_exporter": "python",
|
| 271 |
+
"pygments_lexer": "ipython3",
|
| 272 |
+
"version": "3.12.2"
|
| 273 |
+
}
|
| 274 |
+
},
|
| 275 |
+
"nbformat": 4,
|
| 276 |
+
"nbformat_minor": 2
|
| 277 |
+
}
|