Spaces:
Sleeping
Sleeping
File size: 7,076 Bytes
c4a1c35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# -*- coding: utf-8 -*-
"""Judol Gradio YOLO11.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1oiuTAi-cys1ydtUhSDJSRdeA02mAmZQH
"""
import cv2
from ultralytics import YOLO
import gradio as gr
import imageio
model = YOLO('https://huggingface.co/JrEasy/Judol-Detection-YOLO11/resolve/main/best.pt')
confidence_threshold = 0.6
class_names = {
0: "BK8",
1: "Gate of Olympus",
2: "Princess",
3: "Starlight Princess",
4: "Zeus",
}
class_colors = {
0: (0, 255, 0), # Green for BK8
1: (255, 0, 0), # Blue for Gate of Olympus
2: (0, 0, 255), # Red for Princess
3: (255, 255, 0), # Cyan for Starlight Princess
4: (255, 0, 255), # Magenta for Zeus
}
def format_time_ranges(timestamps, classes):
if not timestamps:
return ""
class_timestamps = {}
for timestamp, class_id in zip(timestamps, classes):
class_name = class_names.get(class_id, 'Unknown')
if class_name not in class_timestamps:
class_timestamps[class_name] = []
class_timestamps[class_name].append(timestamp)
formatted_ranges = []
for class_name, timestamps in class_timestamps.items():
timestamps = sorted(timestamps)
ranges = []
start = timestamps[0]
for i in range(1, len(timestamps)):
if timestamps[i] - timestamps[i - 1] <= 1:
continue
else:
ranges.append(f"{int(start)}-{int(timestamps[i - 1])}")
start = timestamps[i]
ranges.append(f"{int(start)}-{int(timestamps[-1])}")
formatted_ranges.append(f"{class_name} = {', '.join(ranges)}")
return ", ".join(formatted_ranges)
import os
def process_video(input_video):
cap = cv2.VideoCapture(input_video)
if not cap.isOpened():
print("Error: Could not open input video.")
return None, []
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Define the output video path in the current directory
output_video_path = os.path.join(os.getcwd(), "processed_video.mp4")
writer = imageio.get_writer(output_video_path, fps=fps, codec="h264")
frame_count = 0
timestamps = []
classes_detected = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
timestamp = frame_count / fps
frame_count += 1
# Resize the frame to 640x640 before passing to the model
resized_frame = cv2.resize(frame, (640, 640))
gray_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
input_frame = cv2.merge([gray_frame, gray_frame, gray_frame])
results = model.predict(input_frame)
for result in results:
for box in result.boxes:
if box.conf[0] >= confidence_threshold:
x1, y1, x2, y2 = map(int, box.xyxy[0])
class_id = int(box.cls[0])
class_name = class_names.get(class_id, f"Class {class_id}")
color = class_colors.get(class_id, (0, 255, 0))
cv2.rectangle(resized_frame, (x1, y1), (x2, y2), color, 2)
text = f'{class_name}, Conf: {box.conf[0]:.2f}'
text_position = (x1, y1 - 10 if y1 > 20 else y1 + 20)
cv2.putText(resized_frame, text, text_position, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
timestamps.append(timestamp)
classes_detected.append(class_id)
# Resize the frame back to original size for the output video
output_frame = cv2.resize(resized_frame, (frame_width, frame_height))
writer.append_data(cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB))
cap.release()
writer.close()
formatted_time_ranges = format_time_ranges(timestamps, classes_detected)
print(f"Processed video saved at: {output_video_path}")
return output_video_path, formatted_time_ranges
def process_image(input_image):
# Convert image from RGB to BGR for OpenCV processing
bgr_frame = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
# Resize the frame to 640x640 before passing to the model
resized_frame = cv2.resize(bgr_frame, (640, 640))
# Convert to grayscale and create a 3-channel grayscale image
gray_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
input_frame = cv2.merge([gray_frame, gray_frame, gray_frame])
results = model.predict(input_frame)
detections_log = []
classes_detected = []
for result in results:
for box in result.boxes:
if box.conf[0] >= confidence_threshold:
x1, y1, x2, y2 = map(int, box.xyxy[0])
class_id = int(box.cls[0])
class_name = class_names.get(class_id, f"Class {class_id}")
color = class_colors.get(class_id, (0, 255, 0)) # Default green color
cv2.rectangle(resized_frame, (x1, y1), (x2, y2), color, 2)
text = f'{class_name}, Conf: {box.conf[0]:.2f}'
text_position = (x1, y1 - 10 if y1 > 20 else y1 + 20)
cv2.putText(resized_frame, text, text_position, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
detections_log.append({
"class": class_name,
"confidence": box.conf[0]
})
classes_detected.append(class_id)
# Count occurrences of each class detected
class_count = {class_names.get(cls, f"Class {cls}"): classes_detected.count(cls) for cls in set(classes_detected)}
# Format the detections as 'Class = Count' pairs
formatted_log = ", ".join([f"{class_name} = {count}" for class_name, count in class_count.items()])
# Convert the output frame back to RGB
output_image = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
return output_image, formatted_log
with gr.Blocks() as app:
gr.Markdown("## Judol Detection using YOLOv11")
with gr.Tab("Video Detection"):
with gr.Row():
input_video = gr.Video(label="Upload a video")
output_video = gr.Video(label="Processed Video")
detections_log = gr.Textbox(label="Detections Log", lines=10)
input_video.change(
fn=lambda input_video: process_video(input_video) if input_video else ("", []),
inputs=input_video,
outputs=[output_video, detections_log],
)
with gr.Tab("Image Detection"):
with gr.Row():
input_image = gr.Image(label="Upload an image")
output_image = gr.Image(label="Processed Image")
image_detections_log = gr.Textbox(label="Detections Log", lines=10)
input_image.change(
fn=process_image,
inputs=input_image,
outputs=[output_image, image_detections_log],
)
app.launch() |