Spaces:
Sleeping
Sleeping
File size: 8,242 Bytes
4931ec7 013ddd6 edd739b 6750559 55a302f 6750559 af90fa1 6750559 013ddd6 6750559 013ddd6 4931ec7 013ddd6 3f44f2a 013ddd6 65487b9 013ddd6 65487b9 013ddd6 3f44f2a 013ddd6 3f44f2a 013ddd6 65487b9 013ddd6 3f44f2a 013ddd6 3f44f2a 013ddd6 65487b9 013ddd6 4931ec7 013ddd6 3f44f2a 013ddd6 3f44f2a 013ddd6 4931ec7 013ddd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
from openai import OpenAI
import streamlit as st
st.title("Trillion-7B-Preview")
client = OpenAI(
api_key=os.getenv("OPENROUTER_API_KEY"),
# api_key=os.getenv("OpenAI"),
# base_url=os.getenv("BASE_URL"),
# base_url=os.getenv("https://api.openai.com/v1"),
base_url=os.getenv("https://openrouter.ai/api/v1"),
)
if "openai_model" not in st.session_state:
# st.session_state["openai_model"] = "trillionlabs/Trillion-7B-preview"
st.session_state["openai_model"] = "deepseek/deepseek-chat-v3-0324:free"
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Message"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
extra_body={
"topP": 0.95,
"maxTokens": 3072,
"temperature": 0.6,
},
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
# import os
# import torch
# import time
# import warnings
# from fastapi import FastAPI, Request
# from fastapi.responses import JSONResponse
# from fastapi.middleware.cors import CORSMiddleware
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# # Suppress specific warnings
# warnings.filterwarnings("ignore", category=FutureWarning, module="transformers.utils.hub")
# # Configure environment variables for cache
# os.environ["HF_HOME"] = os.getenv("HF_HOME", "/app/cache/huggingface")
# os.environ["MPLCONFIGDIR"] = os.getenv("MPLCONFIGDIR", "/app/cache/matplotlib")
# # Ensure cache directories exist
# os.makedirs(os.environ["HF_HOME"], exist_ok=True)
# os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
# # Initialize FastAPI app
# app = FastAPI()
# def log_message(message: str):
# """Helper function for logging"""
# print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}")
# def load_model():
# """Load the model with CPU optimization"""
# model_name = "trillionlabs/Trillion-7B-preview-AWQ"
# log_message("Loading tokenizer...")
# try:
# tokenizer = AutoTokenizer.from_pretrained(
# model_name,
# trust_remote_code=True
# )
# except Exception as e:
# log_message(f"Tokenizer loading failed: {e}")
# # Fallback to LlamaTokenizer if available
# from transformers import LlamaTokenizer
# tokenizer = LlamaTokenizer.from_pretrained(model_name)
# log_message("Loading model...")
# try:
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# trust_remote_code=True
# )
# # Explicitly move to CPU
# model = model.to("cpu")
# model.eval()
# except Exception as e:
# log_message(f"Model loading failed: {e}")
# raise
# log_message("Creating pipeline...")
# text_generator = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# device="cpu"
# )
# return text_generator, tokenizer
# # Load model
# try:
# log_message("Starting model loading process...")
# text_generator, tokenizer = load_model()
# log_message("Model loaded successfully")
# except Exception as e:
# log_message(f"Critical error loading model: {e}")
# raise
# # API endpoints
# @app.post("/api/generate")
# async def api_generate(request: Request):
# """API endpoint for text generation"""
# try:
# data = await request.json()
# prompt = data.get("prompt", "").strip()
# if not prompt:
# return JSONResponse({"error": "Prompt cannot be empty"}, status_code=400)
# max_length = min(int(data.get("max_length", 100)), 300) # Conservative limit
# start_time = time.time()
# outputs = text_generator(
# prompt,
# max_length=max_length,
# do_sample=True,
# temperature=0.7,
# top_k=50,
# top_p=0.95,
# pad_token_id=tokenizer.eos_token_id
# )
# generation_time = time.time() - start_time
# response_data = {
# "generated_text": outputs[0]["generated_text"],
# "time_seconds": round(generation_time, 2),
# "tokens_generated": len(tokenizer.tokenize(outputs[0]["generated_text"])),
# "model": "Trillion-7B-preview-AWQ",
# "device": "cpu"
# }
# return JSONResponse(response_data)
# except Exception as e:
# log_message(f"API Error: {e}")
# return JSONResponse({"error": str(e)}, status_code=500)
# @app.get("/health")
# async def health_check():
# """Health check endpoint"""
# return {
# "status": "healthy",
# "model_loaded": text_generator is not None,
# "device": "cpu",
# "cache_path": os.environ["HF_HOME"]
# }
# # Gradio Interface
# def gradio_generate(prompt, max_length=100):
# """Function for Gradio interface generation"""
# try:
# max_length = min(int(max_length), 300) # Same conservative limit as API
# if not prompt.strip():
# return "Please enter a prompt"
# outputs = text_generator(
# prompt,
# max_length=max_length,
# do_sample=True,
# temperature=0.7,
# top_k=50,
# top_p=0.95,
# pad_token_id=tokenizer.eos_token_id
# )
# return outputs[0]["generated_text"]
# except Exception as e:
# log_message(f"Gradio Error: {e}")
# return f"Error generating text: {str(e)}"
# with gr.Blocks(title="Trillion-7B CPU Demo", theme=gr.themes.Default()) as gradio_app:
# gr.Markdown("""
# # 🚀 Trillion-7B-preview-AWQ (CPU Version)
# *Running on CPU with optimized settings - responses may be slower than GPU versions*
# """)
# with gr.Row():
# with gr.Column():
# input_prompt = gr.Textbox(
# label="Your Prompt",
# placeholder="Enter text here...",
# lines=5,
# max_lines=10
# )
# with gr.Row():
# max_length = gr.Slider(
# label="Max Length",
# minimum=20,
# maximum=300,
# value=100,
# step=10
# )
# generate_btn = gr.Button("Generate", variant="primary")
# with gr.Column():
# output_text = gr.Textbox(
# label="Generated Text",
# lines=10,
# interactive=False
# )
# # Examples
# gr.Examples(
# examples=[
# ["Explain quantum computing in simple terms"],
# ["Write a haiku about artificial intelligence"],
# ["What are the main benefits of renewable energy?"],
# ["Suggest three ideas for a science fiction story"]
# ],
# inputs=input_prompt,
# label="Example Prompts"
# )
# generate_btn.click(
# fn=gradio_generate,
# inputs=[input_prompt, max_length],
# outputs=output_text
# )
# # Mount Gradio app
# app = gr.mount_gradio_app(app, gradio_app, path="/")
# # CORS configuration
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_methods=["*"],
# allow_headers=["*"],
# )
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860) |