File size: 8,242 Bytes
4931ec7
013ddd6
 
 
 
 
 
 
edd739b
6750559
55a302f
6750559
af90fa1
6750559
013ddd6
 
 
6750559
 
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4931ec7
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65487b9
013ddd6
 
 
65487b9
013ddd6
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65487b9
013ddd6
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65487b9
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4931ec7
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
3f44f2a
013ddd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4931ec7
013ddd6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os

from openai import OpenAI
import streamlit as st

st.title("Trillion-7B-Preview")

client = OpenAI(
    api_key=os.getenv("OPENROUTER_API_KEY"),
    # api_key=os.getenv("OpenAI"),
    # base_url=os.getenv("BASE_URL"),
    # base_url=os.getenv("https://api.openai.com/v1"),
    base_url=os.getenv("https://openrouter.ai/api/v1"),
    
)

if "openai_model" not in st.session_state:
    # st.session_state["openai_model"] = "trillionlabs/Trillion-7B-preview"
    st.session_state["openai_model"] = "deepseek/deepseek-chat-v3-0324:free"

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Message"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            stream=True,
            extra_body={
                "topP": 0.95, 
                "maxTokens": 3072, 
                "temperature": 0.6,
            },
        )
        response = st.write_stream(stream)
    st.session_state.messages.append({"role": "assistant", "content": response})
# import os
# import torch
# import time
# import warnings
# from fastapi import FastAPI, Request
# from fastapi.responses import JSONResponse
# from fastapi.middleware.cors import CORSMiddleware
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# # Suppress specific warnings
# warnings.filterwarnings("ignore", category=FutureWarning, module="transformers.utils.hub")

# # Configure environment variables for cache
# os.environ["HF_HOME"] = os.getenv("HF_HOME", "/app/cache/huggingface")
# os.environ["MPLCONFIGDIR"] = os.getenv("MPLCONFIGDIR", "/app/cache/matplotlib")

# # Ensure cache directories exist
# os.makedirs(os.environ["HF_HOME"], exist_ok=True)
# os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)

# # Initialize FastAPI app
# app = FastAPI()

# def log_message(message: str):
#     """Helper function for logging"""
#     print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}")

# def load_model():
#     """Load the model with CPU optimization"""
#     model_name = "trillionlabs/Trillion-7B-preview-AWQ"
    
#     log_message("Loading tokenizer...")
#     try:
#         tokenizer = AutoTokenizer.from_pretrained(
#             model_name,
#             trust_remote_code=True
#         )
#     except Exception as e:
#         log_message(f"Tokenizer loading failed: {e}")
#         # Fallback to LlamaTokenizer if available
#         from transformers import LlamaTokenizer
#         tokenizer = LlamaTokenizer.from_pretrained(model_name)
    
#     log_message("Loading model...")
#     try:
#         model = AutoModelForCausalLM.from_pretrained(
#             model_name,
#             torch_dtype=torch.float32,
#             trust_remote_code=True
#         )
        
#         # Explicitly move to CPU
#         model = model.to("cpu")
#         model.eval()
        
#     except Exception as e:
#         log_message(f"Model loading failed: {e}")
#         raise
    
#     log_message("Creating pipeline...")
#     text_generator = pipeline(
#         "text-generation",
#         model=model,
#         tokenizer=tokenizer,
#         device="cpu"
#     )
    
#     return text_generator, tokenizer

# # Load model
# try:
#     log_message("Starting model loading process...")
#     text_generator, tokenizer = load_model()
#     log_message("Model loaded successfully")
# except Exception as e:
#     log_message(f"Critical error loading model: {e}")
#     raise

# # API endpoints
# @app.post("/api/generate")
# async def api_generate(request: Request):
#     """API endpoint for text generation"""
#     try:
#         data = await request.json()
#         prompt = data.get("prompt", "").strip()
#         if not prompt:
#             return JSONResponse({"error": "Prompt cannot be empty"}, status_code=400)
            
#         max_length = min(int(data.get("max_length", 100)), 300)  # Conservative limit
        
#         start_time = time.time()
#         outputs = text_generator(
#             prompt,
#             max_length=max_length,
#             do_sample=True,
#             temperature=0.7,
#             top_k=50,
#             top_p=0.95,
#             pad_token_id=tokenizer.eos_token_id
#         )
#         generation_time = time.time() - start_time
        
#         response_data = {
#             "generated_text": outputs[0]["generated_text"],
#             "time_seconds": round(generation_time, 2),
#             "tokens_generated": len(tokenizer.tokenize(outputs[0]["generated_text"])),
#             "model": "Trillion-7B-preview-AWQ",
#             "device": "cpu"
#         }
#         return JSONResponse(response_data)
#     except Exception as e:
#         log_message(f"API Error: {e}")
#         return JSONResponse({"error": str(e)}, status_code=500)

# @app.get("/health")
# async def health_check():
#     """Health check endpoint"""
#     return {
#         "status": "healthy",
#         "model_loaded": text_generator is not None,
#         "device": "cpu",
#         "cache_path": os.environ["HF_HOME"]
#     }

# # Gradio Interface
# def gradio_generate(prompt, max_length=100):
#     """Function for Gradio interface generation"""
#     try:
#         max_length = min(int(max_length), 300)  # Same conservative limit as API
#         if not prompt.strip():
#             return "Please enter a prompt"
            
#         outputs = text_generator(
#             prompt,
#             max_length=max_length,
#             do_sample=True,
#             temperature=0.7,
#             top_k=50,
#             top_p=0.95,
#             pad_token_id=tokenizer.eos_token_id
#         )
#         return outputs[0]["generated_text"]
#     except Exception as e:
#         log_message(f"Gradio Error: {e}")
#         return f"Error generating text: {str(e)}"

# with gr.Blocks(title="Trillion-7B CPU Demo", theme=gr.themes.Default()) as gradio_app:
#     gr.Markdown("""
#     # 🚀 Trillion-7B-preview-AWQ (CPU Version)
#     *Running on CPU with optimized settings - responses may be slower than GPU versions*
#     """)
    
#     with gr.Row():
#         with gr.Column():
#             input_prompt = gr.Textbox(
#                 label="Your Prompt",
#                 placeholder="Enter text here...",
#                 lines=5,
#                 max_lines=10
#             )
#             with gr.Row():
#                 max_length = gr.Slider(
#                     label="Max Length",
#                     minimum=20,
#                     maximum=300,
#                     value=100,
#                     step=10
#                 )
#                 generate_btn = gr.Button("Generate", variant="primary")
#         with gr.Column():
#             output_text = gr.Textbox(
#                 label="Generated Text",
#                 lines=10,
#                 interactive=False
#             )
    
#     # Examples
#     gr.Examples(
#         examples=[
#             ["Explain quantum computing in simple terms"],
#             ["Write a haiku about artificial intelligence"],
#             ["What are the main benefits of renewable energy?"],
#             ["Suggest three ideas for a science fiction story"]
#         ],
#         inputs=input_prompt,
#         label="Example Prompts"
#     )
    
#     generate_btn.click(
#         fn=gradio_generate,
#         inputs=[input_prompt, max_length],
#         outputs=output_text
#     )

# # Mount Gradio app
# app = gr.mount_gradio_app(app, gradio_app, path="/")

# # CORS configuration
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=7860)