HardcoreLogic / app.py
JunsWan's picture
Update app.py
b814215 verified
raw
history blame
5.91 kB
import argparse
import gradio as gr
import pandas as pd
import json
from constants import *
from datetime import datetime
from utils_display import model_info
from constants import column_names
import pytz
from data_utils import post_processing
LAST_UPDATED = None
INTRO_MD = ""
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
raw_data = None
original_df = None
raw_puzzle_data = None
puzzle_df = None
available_models = list(model_info.keys())
def _gstr(text):
return gr.Text(text, visible=False)
def _tab_leaderboard():
global original_df
df =original_df.copy()
df.insert(0, "#", range(1, 1 + len(df)))
if "Open Source" in df.columns:
df["Open Source"] = df["Open Source"].apply(lambda x: "โœ…" if x else "โŒ")
leaderboard_table = gr.components.Dataframe(
value=df,
datatype=["number", "markdown", "bool", "number", "number", "number", "number"],
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=[50, 200, 100, 120, 120, 120, 130],
wrap=True,
height=800
)
return leaderboard_table
def _tab_leaderboard_puzzle():
global puzzle_df
df =puzzle_df.copy()
df.insert(0, "#", range(1, 1 + len(df)))
leaderboard_puzzle_table = gr.components.Dataframe(
value=df,
datatype=["number", "markdown", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number"],
elem_id="leaderboard-puzzle-table",
interactive=False,
visible=True,
column_widths=[50, 200, 150, 150, 150, 150, 150, 150, 150, 150, 150,150, 150],
wrap=True,
height=800
)
return leaderboard_puzzle_table
def _tab_submit():
markdown_text = """
Please create an issue on our [Github](https://github.com/ljcleo/hardcore-logic) repository to talk about your model. Then, we can test it for you and report the results here on the Leaderboard.
If you would like to do local testing, please read our code [here](https://github.com/ljcleo/hardcore-logic/tree/master/src/evaluator)
and apply for the access for the [HardcoreLogic](https://hf.co/dataset/?/?) that contains the truth solutions.
"""
gr.Markdown("## ๐Ÿš€ Evaluate your models\n\n" + markdown_text, elem_classes="markdown-text")
def build_demo():
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.HTML(BANNER, elem_id="banner")
# convert LAST_UPDATED to the PDT time
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
header_md_text = HEADER_MD.replace("{LAST_UPDATED}", str(LAST_UPDATED))
gr.Markdown(header_md_text, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# ๐Ÿ… Leaderboard
with gr.TabItem("๐Ÿ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
_tab_leaderboard()
# ๐ŸŽฏ Accuracy for each puzzl
with gr.TabItem("๐ŸŽฏ Accuracy for each puzzle",elem_id="od-benchmark-tab-table", id=1):
_tab_leaderboard_puzzle()
'''
# ๐Ÿš€ Evaluate your models
with gr.TabItem("๐Ÿš€ Evaluate your models", elem_id="od-benchmark-tab-table", id=3):
_tab_submit()
'''
'''
# ๐Ÿ“ฎ About Us
with gr.TabItem("๐Ÿ“ฎ About Us", elem_id="od-benchmark-tab-table", id=4):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
'''
# ๐Ÿ“š Citation ๅŒบๅŸŸ
with gr.Accordion("๐Ÿ“š Citation", open=False):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy this BibTeX to cite us",
elem_id="citation-button",
show_copy_button=True
)
return demo
def data_load(result_file,puzzle_file):
global raw_data, original_df, raw_puzzle_data, puzzle_df
print(f"Loading {result_file}")
column_names_main = column_names.copy()
column_puzzle_main = column_names_puzzle.copy()
main_ordered_columns = ORDERED_COLUMN_NAMES
puzzle_main_ordered_columns =ORDERED_COLUMN_NAMES_PUZZLE
click_url = True
with open(result_file, "r") as f:
raw_data = json.load(f)
for d in raw_data:
for k, v in d.items():
try:
d[k] = float(v)
except:
pass
with open(puzzle_file, "r") as f:
raw_puzzle_data = json.load(f)
for d in raw_puzzle_data:
for k, v in d.items():
try:
d[k] = float(v)
except:
pass
original_df = pd.DataFrame(raw_data)
original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
puzzle_df = pd.DataFrame(raw_puzzle_data)
puzzle_df = post_processing(puzzle_df, column_puzzle_main, ordered_columns=puzzle_main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
print(f"original_df.columns: {original_df.columns}")
print(f"puzzle_df.columns: {puzzle_df.columns}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="hardcorelogic.summary.json")
parser.add_argument("--puzzle_file", help="Path to results(puzzle) table", default="hardcorelogic.puzzle.json")
args = parser.parse_args()
data_load(args.result_file,args.puzzle_file)
print(original_df)
demo = build_demo()
demo.launch(share=args.share, height=3000, width="100%")