from datasets.utils.logging import disable_progress_bar from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES from utils_display import make_clickable_model disable_progress_bar() import json import os summary_file = "hardcorelogic.summary.json" #result_dir = "HardcoreLogic-Eval/results_dirs" results_by_model = {} # Formats the columns def formatter(x): if type(x) is str: x = x else: x = round(x, 2) return x def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True): df = df[[col for col in column_names.keys() if col in df.columns]].copy() for col in df.columns: if col == "model" and click_url: df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) else: df[col] = df[col].apply(formatter) # For numerical values list_columns = [col for col in ordered_columns if col in df.columns] df = df[list_columns] if rank_column in df.columns: df.sort_values(by=rank_column, inplace=True, ascending=False) df.rename(columns=column_names, inplace=True) return df