Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import pdfplumber | |
| import tempfile | |
| from huggingface_hub import InferenceClient | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import FAISS | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| import os | |
| from huggingface_hub import InferenceClient | |
| hf_tokens = os.environ.get("hf_token") | |
| # client = InferenceClient( | |
| # provider="novita", | |
| # api_key=hf_tokens | |
| # ) | |
| # Initialize Hugging Face InferenceClient | |
| client = InferenceClient( | |
| provider="novita", | |
| api_key=hf_tokens #"hf_xxxxxxxxxxxxxxxxxxxxxxxxx" # Replace with your HF token | |
| ) | |
| # Global vectorstore | |
| vectorstore = None | |
| # Load and process the uploaded PDF | |
| def load_pdf(file): | |
| global vectorstore | |
| try: | |
| # Save uploaded file to temp path (file is already bytes in Kaggle!) | |
| temp_pdf_path = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf").name | |
| with open(temp_pdf_path, "wb") as f: | |
| f.write(file) # <--- FIXED LINE | |
| # Extract text using pdfplumber | |
| import pdfplumber | |
| raw_text = "" | |
| with pdfplumber.open(temp_pdf_path) as pdf: | |
| for page in pdf.pages: | |
| text = page.extract_text() | |
| if text: | |
| raw_text += text + "\n" | |
| if not raw_text.strip(): | |
| return "β No extractable text found in the PDF." | |
| # Chunk the text | |
| splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100) | |
| texts = splitter.split_text(raw_text) | |
| # Create FAISS vectorstore | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
| vectorstore = FAISS.from_texts(texts, embeddings) | |
| return "β PDF successfully processed. You can now ask questions!" | |
| except Exception as e: | |
| return f"β Error: {str(e)}" | |
| def ask_question(query): | |
| global vectorstore | |
| if vectorstore is None: | |
| return "β Please upload a PDF first." | |
| try: | |
| docs = vectorstore.similarity_search(query, k=3) | |
| context = "\n\n".join([doc.page_content for doc in docs]) | |
| # Prepare chat message format | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": "You are a helpful assistant that answers questions based on a document." | |
| }, | |
| { | |
| "role": "user", | |
| "content": f"Answer this question using the context below:\n\nContext:\n{context}\n\nQuestion:\n{query}" | |
| } | |
| ] | |
| # Use chat.completions.create | |
| completion = client.chat.completions.create( | |
| model="meta-llama/Llama-4-Scout-17B-16E-Instruct", | |
| messages=messages, | |
| max_tokens=500 | |
| ) | |
| return completion.choices[0].message.content.strip() | |
| except Exception as e: | |
| return f"β Failed to generate answer: {str(e)}" | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## π RAG PDF Chatbot using Hugging Face Inference API") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload PDF", type="binary") | |
| upload_btn = gr.Button("Process") | |
| status_box = gr.Textbox(label="Status", interactive=False) | |
| with gr.Row(): | |
| question = gr.Textbox(label="Ask a Question") | |
| ask_btn = gr.Button("Ask") | |
| answer = gr.Textbox(label="Answer", lines=6) | |
| upload_btn.click(load_pdf, inputs=file_input, outputs=status_box) | |
| ask_btn.click(ask_question, inputs=question, outputs=answer) | |
| demo.launch() | |