Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from abc import ABC, abstractmethod | |
| from dataclasses import dataclass | |
| from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union | |
| if TYPE_CHECKING: | |
| from numpy.typing import NDArray | |
| from transformers import PreTrainedModel, PreTrainedTokenizer | |
| from vllm import AsyncLLMEngine | |
| from ..data import Template | |
| from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
| class Response: | |
| response_text: str | |
| response_length: int | |
| prompt_length: int | |
| finish_reason: Literal["stop", "length"] | |
| class BaseEngine(ABC): | |
| model: Union["PreTrainedModel", "AsyncLLMEngine"] | |
| tokenizer: "PreTrainedTokenizer" | |
| can_generate: bool | |
| template: "Template" | |
| generating_args: Dict[str, Any] | |
| def __init__( | |
| self, | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| finetuning_args: "FinetuningArguments", | |
| generating_args: "GeneratingArguments", | |
| ) -> None: ... | |
| async def start( | |
| self, | |
| ) -> None: ... | |
| async def chat( | |
| self, | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| **input_kwargs, | |
| ) -> List["Response"]: ... | |
| async def stream_chat( | |
| self, | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| **input_kwargs, | |
| ) -> AsyncGenerator[str, None]: ... | |
| async def get_scores( | |
| self, | |
| batch_input: List[str], | |
| **input_kwargs, | |
| ) -> List[float]: ... | |