Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
| from ...extras.constants import IGNORE_INDEX | |
| from ...extras.logging import get_logger | |
| from .processor_utils import get_paligemma_token_type_ids, get_pixel_values | |
| if TYPE_CHECKING: | |
| from transformers import PreTrainedTokenizer, ProcessorMixin | |
| from ...hparams import DataArguments | |
| from ..template import Template | |
| logger = get_logger(__name__) | |
| def _encode_feedback_example( | |
| prompt: Sequence[Dict[str, str]], | |
| response: Sequence[Dict[str, str]], | |
| kl_response: Sequence[Dict[str, str]], | |
| system: Optional[str], | |
| tools: Optional[str], | |
| template: "Template", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| data_args: "DataArguments", | |
| ) -> Tuple[List[int], List[int], List[int], List[int], bool]: | |
| if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
| prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
| if response[0]["content"]: # desired example | |
| kto_tag = True | |
| messages = prompt + [response[0]] | |
| else: # undesired example | |
| kto_tag = False | |
| messages = prompt + [response[1]] | |
| if kl_response[0]["content"]: | |
| kl_messages = prompt + [kl_response[0]] | |
| else: | |
| kl_messages = prompt + [kl_response[1]] | |
| prompt_ids, response_ids = template.encode_oneturn( | |
| tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len | |
| ) | |
| _, kl_response_ids = template.encode_oneturn( | |
| tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len | |
| ) | |
| if template.efficient_eos: | |
| response_ids += [tokenizer.eos_token_id] | |
| kl_response_ids += [tokenizer.eos_token_id] | |
| if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
| image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
| prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids | |
| input_ids = prompt_ids + response_ids | |
| labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids | |
| kl_input_ids = prompt_ids + kl_response_ids | |
| kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids | |
| return input_ids, labels, kl_input_ids, kl_labels, kto_tag | |
| def preprocess_feedback_dataset( | |
| examples: Dict[str, List[Any]], | |
| template: "Template", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| data_args: "DataArguments", | |
| ) -> Dict[str, List[List[int]]]: | |
| # create unrelated input-output pairs for estimating the KL term by flipping the matched pairs | |
| kl_response = examples["response"][::-1] | |
| model_inputs = { | |
| "input_ids": [], | |
| "attention_mask": [], | |
| "labels": [], | |
| "kl_input_ids": [], | |
| "kl_attention_mask": [], | |
| "kl_labels": [], | |
| "kto_tags": [], | |
| } | |
| if processor is not None: | |
| model_inputs["pixel_values"] = [] | |
| if hasattr(processor, "image_seq_length"): # paligemma models | |
| model_inputs["token_type_ids"] = [] | |
| model_inputs["kl_token_type_ids"] = [] | |
| for i in range(len(examples["prompt"])): | |
| if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: | |
| logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
| continue | |
| input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example( | |
| prompt=examples["prompt"][i], | |
| response=examples["response"][i], | |
| kl_response=kl_response[i], | |
| system=examples["system"][i], | |
| tools=examples["tools"][i], | |
| template=template, | |
| tokenizer=tokenizer, | |
| processor=processor, | |
| data_args=data_args, | |
| ) | |
| model_inputs["input_ids"].append(input_ids) | |
| model_inputs["attention_mask"].append([1] * len(input_ids)) | |
| model_inputs["labels"].append(labels) | |
| model_inputs["kl_input_ids"].append(kl_input_ids) | |
| model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) | |
| model_inputs["kl_labels"].append(kl_labels) | |
| model_inputs["kto_tags"].append(kto_tag) | |
| if processor is not None: | |
| model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
| if hasattr(processor, "image_seq_length"): # paligemma models | |
| model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) | |
| model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor)) | |
| desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) | |
| undesirable_num = len(model_inputs["kto_tags"]) - desirable_num | |
| if desirable_num == 0 or undesirable_num == 0: | |
| logger.warning("Your dataset only has one preference type.") | |
| return model_inputs | |