Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| from typing import List, Literal, Optional | |
| class FreezeArguments: | |
| r""" | |
| Arguments pertaining to the freeze (partial-parameter) training. | |
| """ | |
| freeze_trainable_layers: int = field( | |
| default=2, | |
| metadata={ | |
| "help": ( | |
| "The number of trainable layers for freeze (partial-parameter) fine-tuning. " | |
| "Positive numbers mean the last n layers are set as trainable, " | |
| "negative numbers mean the first n layers are set as trainable." | |
| ) | |
| }, | |
| ) | |
| freeze_trainable_modules: str = field( | |
| default="all", | |
| metadata={ | |
| "help": ( | |
| "Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. " | |
| "Use commas to separate multiple modules. " | |
| "Use `all` to specify all the available modules." | |
| ) | |
| }, | |
| ) | |
| freeze_extra_modules: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Name(s) of modules apart from hidden layers to be set as trainable " | |
| "for freeze (partial-parameter) fine-tuning. " | |
| "Use commas to separate multiple modules." | |
| ) | |
| }, | |
| ) | |
| class LoraArguments: | |
| r""" | |
| Arguments pertaining to the LoRA training. | |
| """ | |
| additional_target: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Name(s) of modules apart from LoRA layers to be set as trainable " | |
| "and saved in the final checkpoint. " | |
| "Use commas to separate multiple modules." | |
| ) | |
| }, | |
| ) | |
| lora_alpha: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}, | |
| ) | |
| lora_dropout: float = field( | |
| default=0.0, | |
| metadata={"help": "Dropout rate for the LoRA fine-tuning."}, | |
| ) | |
| lora_rank: int = field( | |
| default=8, | |
| metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}, | |
| ) | |
| lora_target: str = field( | |
| default="all", | |
| metadata={ | |
| "help": ( | |
| "Name(s) of target modules to apply LoRA. " | |
| "Use commas to separate multiple modules. " | |
| "Use `all` to specify all the linear modules." | |
| ) | |
| }, | |
| ) | |
| loraplus_lr_ratio: Optional[float] = field( | |
| default=None, | |
| metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."}, | |
| ) | |
| loraplus_lr_embedding: float = field( | |
| default=1e-6, | |
| metadata={"help": "LoRA plus learning rate for lora embedding layers."}, | |
| ) | |
| use_rslora: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."}, | |
| ) | |
| use_dora: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."}, | |
| ) | |
| pissa_init: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to initialize a PiSSA adapter."}, | |
| ) | |
| pissa_iter: int = field( | |
| default=4, | |
| metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."}, | |
| ) | |
| pissa_convert: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."}, | |
| ) | |
| create_new_adapter: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}, | |
| ) | |
| class RLHFArguments: | |
| r""" | |
| Arguments pertaining to the PPO, DPO and KTO training. | |
| """ | |
| pref_beta: float = field( | |
| default=0.1, | |
| metadata={"help": "The beta parameter in the preference loss."}, | |
| ) | |
| pref_ftx: float = field( | |
| default=0.0, | |
| metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}, | |
| ) | |
| pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field( | |
| default="sigmoid", | |
| metadata={"help": "The type of DPO loss to use."}, | |
| ) | |
| dpo_label_smoothing: float = field( | |
| default=0.0, | |
| metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."}, | |
| ) | |
| kto_chosen_weight: float = field( | |
| default=1.0, | |
| metadata={"help": "The weight factor of the desirable losses in KTO training."}, | |
| ) | |
| kto_rejected_weight: float = field( | |
| default=1.0, | |
| metadata={"help": "The weight factor of the undesirable losses in KTO training."}, | |
| ) | |
| simpo_gamma: float = field( | |
| default=0.5, | |
| metadata={"help": "The target reward margin term in SimPO loss."}, | |
| ) | |
| ppo_buffer_size: int = field( | |
| default=1, | |
| metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}, | |
| ) | |
| ppo_epochs: int = field( | |
| default=4, | |
| metadata={"help": "The number of epochs to perform in a PPO optimization step."}, | |
| ) | |
| ppo_score_norm: bool = field( | |
| default=False, | |
| metadata={"help": "Use score normalization in PPO training."}, | |
| ) | |
| ppo_target: float = field( | |
| default=6.0, | |
| metadata={"help": "Target KL value for adaptive KL control in PPO training."}, | |
| ) | |
| ppo_whiten_rewards: bool = field( | |
| default=False, | |
| metadata={"help": "Whiten the rewards before compute advantages in PPO training."}, | |
| ) | |
| ref_model: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to the reference model used for the PPO or DPO training."}, | |
| ) | |
| ref_model_adapters: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to the adapters of the reference model."}, | |
| ) | |
| ref_model_quantization_bit: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of bits to quantize the reference model."}, | |
| ) | |
| reward_model: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to the reward model used for the PPO training."}, | |
| ) | |
| reward_model_adapters: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to the adapters of the reward model."}, | |
| ) | |
| reward_model_quantization_bit: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of bits to quantize the reward model."}, | |
| ) | |
| reward_model_type: Literal["lora", "full", "api"] = field( | |
| default="lora", | |
| metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}, | |
| ) | |
| class GaloreArguments: | |
| r""" | |
| Arguments pertaining to the GaLore algorithm. | |
| """ | |
| use_galore: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."}, | |
| ) | |
| galore_target: str = field( | |
| default="all", | |
| metadata={ | |
| "help": ( | |
| "Name(s) of modules to apply GaLore. Use commas to separate multiple modules. " | |
| "Use `all` to specify all the linear modules." | |
| ) | |
| }, | |
| ) | |
| galore_rank: int = field( | |
| default=16, | |
| metadata={"help": "The rank of GaLore gradients."}, | |
| ) | |
| galore_update_interval: int = field( | |
| default=200, | |
| metadata={"help": "Number of steps to update the GaLore projection."}, | |
| ) | |
| galore_scale: float = field( | |
| default=0.25, | |
| metadata={"help": "GaLore scaling coefficient."}, | |
| ) | |
| galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field( | |
| default="std", | |
| metadata={"help": "Type of GaLore projection."}, | |
| ) | |
| galore_layerwise: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to enable layer-wise update to further save memory."}, | |
| ) | |
| class BAdamArgument: | |
| r""" | |
| Arguments pertaining to the BAdam optimizer. | |
| """ | |
| use_badam: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to use the BAdam optimizer."}, | |
| ) | |
| badam_mode: Literal["layer", "ratio"] = field( | |
| default="layer", | |
| metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."}, | |
| ) | |
| badam_start_block: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The starting block index for layer-wise BAdam."}, | |
| ) | |
| badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field( | |
| default="ascending", | |
| metadata={"help": "the strategy of picking block to update for layer-wise BAdam."}, | |
| ) | |
| badam_switch_interval: Optional[int] = field( | |
| default=50, | |
| metadata={ | |
| "help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update." | |
| }, | |
| ) | |
| badam_update_ratio: float = field( | |
| default=0.05, | |
| metadata={"help": "The ratio of the update for ratio-wise BAdam."}, | |
| ) | |
| badam_mask_mode: Literal["adjacent", "scatter"] = field( | |
| default="adjacent", | |
| metadata={ | |
| "help": ( | |
| "The mode of the mask for BAdam optimizer. " | |
| "`adjacent` means that the trainable parameters are adjacent to each other, " | |
| "`scatter` means that trainable parameters are randomly choosed from the weight." | |
| ) | |
| }, | |
| ) | |
| badam_verbose: int = field( | |
| default=0, | |
| metadata={ | |
| "help": ( | |
| "The verbosity level of BAdam optimizer. " | |
| "0 for no print, 1 for print the block prefix, 2 for print trainable parameters." | |
| ) | |
| }, | |
| ) | |
| class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument): | |
| r""" | |
| Arguments pertaining to which techniques we are going to fine-tuning with. | |
| """ | |
| pure_bf16: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."}, | |
| ) | |
| stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field( | |
| default="sft", | |
| metadata={"help": "Which stage will be performed in training."}, | |
| ) | |
| finetuning_type: Literal["lora", "freeze", "full"] = field( | |
| default="lora", | |
| metadata={"help": "Which fine-tuning method to use."}, | |
| ) | |
| use_llama_pro: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."}, | |
| ) | |
| freeze_vision_tower: bool = field( | |
| default=True, | |
| metadata={"help": "Whether ot not to freeze vision tower in MLLM training."}, | |
| ) | |
| train_mm_proj_only: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to train the multimodal projector for MLLM only."}, | |
| ) | |
| plot_loss: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to save the training loss curves."}, | |
| ) | |
| def __post_init__(self): | |
| def split_arg(arg): | |
| if isinstance(arg, str): | |
| return [item.strip() for item in arg.split(",")] | |
| return arg | |
| self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules) | |
| self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules) | |
| self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2 | |
| self.lora_target: List[str] = split_arg(self.lora_target) | |
| self.additional_target: Optional[List[str]] = split_arg(self.additional_target) | |
| self.galore_target: List[str] = split_arg(self.galore_target) | |
| self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only | |
| self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"] | |
| assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." | |
| assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." | |
| assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." | |
| if self.stage == "ppo" and self.reward_model is None: | |
| raise ValueError("`reward_model` is necessary for PPO training.") | |
| if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": | |
| raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.") | |
| if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6: | |
| raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.") | |
| if self.use_llama_pro and self.finetuning_type == "full": | |
| raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.") | |
| if self.finetuning_type == "lora" and (self.use_galore or self.use_badam): | |
| raise ValueError("Cannot use LoRA with GaLore or BAdam together.") | |
| if self.use_galore and self.use_badam: | |
| raise ValueError("Cannot use GaLore with BAdam together.") | |
| if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora": | |
| raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.") | |
| if self.pissa_convert and self.finetuning_type != "lora": | |
| raise ValueError("`pissa_convert` is only valid for LoRA training.") | |
| if self.pissa_convert and (self.stage in ["rm", "ppo", "kto"] or self.use_ref_model): | |
| raise ValueError("Cannot use PiSSA for current training stage.") | |
| if self.train_mm_proj_only and self.finetuning_type != "full": | |
| raise ValueError("`train_mm_proj_only` is only valid for full training.") | |