Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import re | |
| from typing import TYPE_CHECKING | |
| import torch | |
| from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model | |
| from transformers.integrations import is_deepspeed_zero3_enabled | |
| from transformers.modeling_utils import is_fsdp_enabled | |
| from ..extras.logging import get_logger | |
| from .model_utils.misc import find_all_linear_modules, find_expanded_modules | |
| from .model_utils.quantization import QuantizationMethod | |
| from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model | |
| if TYPE_CHECKING: | |
| from transformers import PretrainedConfig, PreTrainedModel | |
| from ..hparams import FinetuningArguments, ModelArguments | |
| logger = get_logger(__name__) | |
| def _setup_full_tuning( | |
| model: "PreTrainedModel", | |
| model_args: "ModelArguments", | |
| finetuning_args: "FinetuningArguments", | |
| is_trainable: bool, | |
| cast_trainable_params_to_fp32: bool, | |
| ) -> None: | |
| if not is_trainable: | |
| return | |
| logger.info("Fine-tuning method: Full") | |
| forbidden_modules = set() | |
| if model_args.visual_inputs and finetuning_args.freeze_vision_tower: | |
| forbidden_modules.add("vision_tower") | |
| if model_args.visual_inputs and finetuning_args.train_mm_proj_only: | |
| forbidden_modules.add("language_model") | |
| for name, param in model.named_parameters(): | |
| if not any(forbidden_module in name for forbidden_module in forbidden_modules): | |
| if cast_trainable_params_to_fp32: | |
| param.data = param.data.to(torch.float32) | |
| else: | |
| param.requires_grad_(False) | |
| def _setup_freeze_tuning( | |
| model: "PreTrainedModel", | |
| model_args: "ModelArguments", | |
| finetuning_args: "FinetuningArguments", | |
| is_trainable: bool, | |
| cast_trainable_params_to_fp32: bool, | |
| ) -> None: | |
| if not is_trainable: | |
| return | |
| logger.info("Fine-tuning method: Freeze") | |
| if model_args.visual_inputs: | |
| config = model.config.text_config | |
| else: | |
| config = model.config | |
| num_layers = ( | |
| getattr(config, "num_hidden_layers", None) | |
| or getattr(config, "num_layers", None) | |
| or getattr(config, "n_layer", None) | |
| ) | |
| if not num_layers: | |
| raise ValueError("Current model does not support freeze tuning.") | |
| if finetuning_args.use_llama_pro: | |
| if num_layers % finetuning_args.freeze_trainable_layers != 0: | |
| raise ValueError( | |
| "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format( | |
| num_layers, finetuning_args.freeze_trainable_layers | |
| ) | |
| ) | |
| stride = num_layers // finetuning_args.freeze_trainable_layers | |
| trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride) | |
| elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0 | |
| trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers) | |
| else: # fine-tuning the first n layers if num_layer_trainable < 0 | |
| trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers)) | |
| hidden_modules = set() | |
| non_hidden_modules = set() | |
| for name, _ in model.named_parameters(): | |
| if ".0." in name: | |
| hidden_modules.add(name.split(".0.")[-1].split(".")[0]) | |
| elif ".1." in name: # MoD starts from layer 1 | |
| hidden_modules.add(name.split(".1.")[-1].split(".")[0]) | |
| if re.search(r"\.\d+\.", name) is None: | |
| non_hidden_modules.add(name.split(".")[-2]) | |
| trainable_layers = [] | |
| for module_name in finetuning_args.freeze_trainable_modules: | |
| if module_name != "all" and module_name not in hidden_modules: | |
| raise ValueError( | |
| "Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules)) | |
| ) | |
| for idx in trainable_layer_ids: | |
| trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else "")) | |
| if finetuning_args.freeze_extra_modules: | |
| for module_name in finetuning_args.freeze_extra_modules: | |
| if module_name not in non_hidden_modules: | |
| raise ValueError( | |
| "Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules)) | |
| ) | |
| trainable_layers.append(module_name) | |
| forbidden_modules = set() | |
| if model_args.visual_inputs and finetuning_args.freeze_vision_tower: | |
| forbidden_modules.add("vision_tower") | |
| for name, param in model.named_parameters(): | |
| if any(trainable_layer in name for trainable_layer in trainable_layers) and not any( | |
| forbidden_module in name for forbidden_module in forbidden_modules | |
| ): | |
| if cast_trainable_params_to_fp32: | |
| param.data = param.data.to(torch.float32) | |
| else: | |
| param.requires_grad_(False) | |
| logger.info("Set trainable layers: {}".format(",".join(trainable_layers))) | |
| def _setup_lora_tuning( | |
| config: "PretrainedConfig", | |
| model: "PreTrainedModel", | |
| model_args: "ModelArguments", | |
| finetuning_args: "FinetuningArguments", | |
| is_trainable: bool, | |
| cast_trainable_params_to_fp32: bool, | |
| ) -> "PeftModel": | |
| if is_trainable: | |
| logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA")) | |
| adapter_to_resume = None | |
| if model_args.adapter_name_or_path is not None: | |
| is_mergeable = True | |
| if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable | |
| assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter." | |
| is_mergeable = False | |
| if is_deepspeed_zero3_enabled(): | |
| assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3." | |
| is_mergeable = False | |
| if model_args.use_unsloth: | |
| assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter." | |
| is_mergeable = False | |
| if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable): | |
| adapter_to_merge = model_args.adapter_name_or_path[:-1] | |
| adapter_to_resume = model_args.adapter_name_or_path[-1] | |
| else: | |
| adapter_to_merge = model_args.adapter_name_or_path | |
| init_kwargs = { | |
| "subfolder": model_args.adapter_folder, | |
| "offload_folder": model_args.offload_folder, | |
| "cache_dir": model_args.cache_dir, | |
| "revision": model_args.model_revision, | |
| "token": model_args.hf_hub_token, | |
| } | |
| for adapter in adapter_to_merge: | |
| model: "LoraModel" = PeftModel.from_pretrained(model, adapter, **init_kwargs) | |
| model = model.merge_and_unload() | |
| if len(adapter_to_merge) > 0: | |
| logger.info("Merged {} adapter(s).".format(len(adapter_to_merge))) | |
| if adapter_to_resume is not None: # resume lora training | |
| if model_args.use_unsloth: | |
| model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable) | |
| else: | |
| model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs) | |
| logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path))) | |
| if is_trainable and adapter_to_resume is None: # create new lora weights while training | |
| if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": | |
| target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) | |
| else: | |
| target_modules = finetuning_args.lora_target | |
| if finetuning_args.use_llama_pro: | |
| target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers) | |
| if model_args.visual_inputs and finetuning_args.freeze_vision_tower: | |
| target_modules = "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules)) | |
| if ( | |
| finetuning_args.use_dora | |
| and getattr(model, "quantization_method", None) is not None | |
| and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES | |
| ): | |
| raise ValueError("DoRA is not compatible with PTQ-quantized models.") | |
| if model_args.resize_vocab and finetuning_args.additional_target is None: | |
| input_embeddings = model.get_input_embeddings() | |
| output_embeddings = model.get_output_embeddings() | |
| module_names = set() | |
| for name, module in model.named_modules(): | |
| if module in [input_embeddings, output_embeddings]: | |
| module_names.add(name.split(".")[-1]) | |
| finetuning_args.additional_target = module_names | |
| logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names))) | |
| peft_kwargs = { | |
| "r": finetuning_args.lora_rank, | |
| "target_modules": target_modules, | |
| "lora_alpha": finetuning_args.lora_alpha, | |
| "lora_dropout": finetuning_args.lora_dropout, | |
| "use_rslora": finetuning_args.use_rslora, | |
| "use_dora": finetuning_args.use_dora, | |
| "modules_to_save": finetuning_args.additional_target, | |
| } | |
| if model_args.use_unsloth: | |
| model = get_unsloth_peft_model(model, model_args, peft_kwargs) | |
| else: | |
| if finetuning_args.pissa_init: | |
| if finetuning_args.pissa_iter == -1: | |
| logger.info("Using PiSSA initialization.") | |
| peft_kwargs["init_lora_weights"] = "pissa" | |
| else: | |
| logger.info("Using PiSSA initialization with FSVD steps {}.".format(finetuning_args.pissa_iter)) | |
| peft_kwargs["init_lora_weights"] = "pissa_niter_{}".format(finetuning_args.pissa_iter) | |
| lora_config = LoraConfig( | |
| task_type=TaskType.CAUSAL_LM, | |
| inference_mode=False, | |
| **peft_kwargs, | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| if is_trainable and cast_trainable_params_to_fp32: | |
| for param in filter(lambda p: p.requires_grad, model.parameters()): | |
| param.data = param.data.to(torch.float32) | |
| return model | |
| def init_adapter( | |
| config: "PretrainedConfig", | |
| model: "PreTrainedModel", | |
| model_args: "ModelArguments", | |
| finetuning_args: "FinetuningArguments", | |
| is_trainable: bool, | |
| ) -> "PreTrainedModel": | |
| r""" | |
| Initializes the adapters. | |
| Support full-parameter, freeze and LoRA training. | |
| Note that the trainable parameters must be cast to float32. | |
| """ | |
| if is_trainable and getattr(model, "quantization_method", None) is not None: | |
| if finetuning_args.finetuning_type != "lora": | |
| raise ValueError("Quantized models can only be used for the LoRA tuning.") | |
| if finetuning_args.pissa_init: | |
| raise ValueError("Cannot initialize PiSSA adapter on quantized models.") | |
| # cast trainable parameters to float32 if: | |
| # 1. is_trainable and quantization_bit is not None (qlora) | |
| # 2. is_trainable and not deepspeed zero3 and not fsdp (zero3 or fsdp already in float32) | |
| # 3. is_trainable and not pure_bf16 and not badam | |
| if not is_trainable: | |
| cast_trainable_params_to_fp32 = False | |
| elif model_args.quantization_bit is None and ( | |
| is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam | |
| ): | |
| logger.info("ZeRO3/FSDP/PureBF16/BAdam detected, remaining trainable params as their original precision.") | |
| cast_trainable_params_to_fp32 = False | |
| else: | |
| logger.info("Upcasting trainable params to float32.") | |
| cast_trainable_params_to_fp32 = True | |
| if finetuning_args.finetuning_type == "full": | |
| _setup_full_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32) | |
| elif finetuning_args.finetuning_type == "freeze": | |
| _setup_freeze_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32) | |
| elif finetuning_args.finetuning_type == "lora": | |
| model = _setup_lora_tuning( | |
| config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32 | |
| ) | |
| else: | |
| raise NotImplementedError("Unknown finetuning type: {}.".format(finetuning_args.finetuning_type)) | |
| return model | |