Spaces:
Running
Running
| # Copyright 2024 LMSYS and the LlamaFactory team. | |
| # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
| # | |
| # This code is inspired by the LMSYS's FastChat library. | |
| # https://github.com/lm-sys/FastChat/blob/v0.2.30/fastchat/train/train.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import TYPE_CHECKING | |
| from ...extras.logging import get_logger | |
| if TYPE_CHECKING: | |
| from transformers import PretrainedConfig | |
| from ...hparams import ModelArguments | |
| logger = get_logger(__name__) | |
| def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
| if model_args.rope_scaling is None: | |
| return | |
| if not hasattr(config, "rope_scaling"): | |
| logger.warning("Current model does not support RoPE scaling.") | |
| return | |
| if is_trainable: | |
| if model_args.rope_scaling == "dynamic": | |
| logger.warning( | |
| "Dynamic NTK scaling may not work well with fine-tuning. " | |
| "See: https://github.com/huggingface/transformers/pull/24653" | |
| ) | |
| current_max_length = getattr(config, "max_position_embeddings", None) | |
| if current_max_length and model_args.model_max_length > current_max_length: | |
| logger.info( | |
| "Enlarge max model length from {} to {}.".format(current_max_length, model_args.model_max_length) | |
| ) | |
| setattr(config, "max_position_embeddings", model_args.model_max_length) | |
| scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) | |
| else: | |
| logger.warning("Input length is smaller than max length. Consider increase input length.") | |
| scaling_factor = 1.0 | |
| else: | |
| scaling_factor = 2.0 | |
| setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) | |
| logger.info( | |
| "Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) | |
| ) | |