Spaces:
Running
Running
| # Copyright 2024 HuggingFace Inc., THUDM, and the LlamaFactory team. | |
| # | |
| # This code is inspired by the HuggingFace's transformers library and the THUDM's ChatGLM implementation. | |
| # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py | |
| # https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/main.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union | |
| import numpy as np | |
| from transformers.utils import is_jieba_available, is_nltk_available | |
| from ...extras.constants import IGNORE_INDEX | |
| from ...extras.packages import is_rouge_available | |
| if TYPE_CHECKING: | |
| from transformers import PreTrainedTokenizer | |
| if is_jieba_available(): | |
| import jieba # type: ignore | |
| if is_nltk_available(): | |
| from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu | |
| if is_rouge_available(): | |
| from rouge_chinese import Rouge | |
| class ComputeMetrics: | |
| r""" | |
| Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer. | |
| """ | |
| tokenizer: "PreTrainedTokenizer" | |
| def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]: | |
| r""" | |
| Uses the model predictions to compute metrics. | |
| """ | |
| preds, labels = eval_preds | |
| score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []} | |
| preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id) | |
| labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id) | |
| decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| for pred, label in zip(decoded_preds, decoded_labels): | |
| hypothesis = list(jieba.cut(pred)) | |
| reference = list(jieba.cut(label)) | |
| if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0: | |
| result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}} | |
| else: | |
| rouge = Rouge() | |
| scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference)) | |
| result = scores[0] | |
| for k, v in result.items(): | |
| score_dict[k].append(round(v["f"] * 100, 4)) | |
| bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) | |
| score_dict["bleu-4"].append(round(bleu_score * 100, 4)) | |
| return {k: float(np.mean(v)) for k, v in score_dict.items()} | |