Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| from collections import defaultdict | |
| from typing import Any, Dict, Optional, Tuple | |
| from yaml import safe_dump, safe_load | |
| from ..extras.constants import ( | |
| CHECKPOINT_NAMES, | |
| DATA_CONFIG, | |
| DEFAULT_TEMPLATE, | |
| PEFT_METHODS, | |
| STAGES_USE_PAIR_DATA, | |
| SUPPORTED_MODELS, | |
| TRAINING_STAGES, | |
| VISION_MODELS, | |
| DownloadSource, | |
| ) | |
| from ..extras.logging import get_logger | |
| from ..extras.misc import use_modelscope | |
| from ..extras.packages import is_gradio_available | |
| if is_gradio_available(): | |
| import gradio as gr | |
| logger = get_logger(__name__) | |
| DEFAULT_CACHE_DIR = "cache" | |
| DEFAULT_CONFIG_DIR = "config" | |
| DEFAULT_DATA_DIR = "data" | |
| DEFAULT_SAVE_DIR = "saves" | |
| USER_CONFIG = "user_config.yaml" | |
| def get_save_dir(*paths: str) -> os.PathLike: | |
| r""" | |
| Gets the path to saved model checkpoints. | |
| """ | |
| if os.path.sep in paths[-1]: | |
| logger.warning("Found complex path, some features may be not available.") | |
| return paths[-1] | |
| paths = (path.replace(" ", "").strip() for path in paths) | |
| return os.path.join(DEFAULT_SAVE_DIR, *paths) | |
| def get_config_path() -> os.PathLike: | |
| r""" | |
| Gets the path to user config. | |
| """ | |
| return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) | |
| def load_config() -> Dict[str, Any]: | |
| r""" | |
| Loads user config if exists. | |
| """ | |
| try: | |
| with open(get_config_path(), "r", encoding="utf-8") as f: | |
| return safe_load(f) | |
| except Exception: | |
| return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} | |
| def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: | |
| r""" | |
| Saves user config. | |
| """ | |
| os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) | |
| user_config = load_config() | |
| user_config["lang"] = lang or user_config["lang"] | |
| if model_name: | |
| user_config["last_model"] = model_name | |
| if model_name and model_path: | |
| user_config["path_dict"][model_name] = model_path | |
| with open(get_config_path(), "w", encoding="utf-8") as f: | |
| safe_dump(user_config, f) | |
| def get_model_path(model_name: str) -> str: | |
| r""" | |
| Gets the model path according to the model name. | |
| """ | |
| user_config = load_config() | |
| path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) | |
| model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "") | |
| if ( | |
| use_modelscope() | |
| and path_dict.get(DownloadSource.MODELSCOPE) | |
| and model_path == path_dict.get(DownloadSource.DEFAULT) | |
| ): # replace path | |
| model_path = path_dict.get(DownloadSource.MODELSCOPE) | |
| return model_path | |
| def get_prefix(model_name: str) -> str: | |
| r""" | |
| Gets the prefix of the model name to obtain the model family. | |
| """ | |
| return model_name.split("-")[0] | |
| def get_model_info(model_name: str) -> Tuple[str, str, bool]: | |
| r""" | |
| Gets the necessary information of this model. | |
| Returns: | |
| model_path (str) | |
| template (str) | |
| visual (bool) | |
| """ | |
| return get_model_path(model_name), get_template(model_name), get_visual(model_name) | |
| def get_template(model_name: str) -> str: | |
| r""" | |
| Gets the template name if the model is a chat model. | |
| """ | |
| if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE: | |
| return DEFAULT_TEMPLATE[get_prefix(model_name)] | |
| return "default" | |
| def get_visual(model_name: str) -> bool: | |
| r""" | |
| Judges if the model is a vision language model. | |
| """ | |
| return get_prefix(model_name) in VISION_MODELS | |
| def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown": | |
| r""" | |
| Lists all available checkpoints. | |
| """ | |
| checkpoints = [] | |
| if model_name: | |
| save_dir = get_save_dir(model_name, finetuning_type) | |
| if save_dir and os.path.isdir(save_dir): | |
| for checkpoint in os.listdir(save_dir): | |
| if os.path.isdir(os.path.join(save_dir, checkpoint)) and any( | |
| os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES | |
| ): | |
| checkpoints.append(checkpoint) | |
| if finetuning_type in PEFT_METHODS: | |
| return gr.Dropdown(value=[], choices=checkpoints, multiselect=True) | |
| else: | |
| return gr.Dropdown(value=None, choices=checkpoints, multiselect=False) | |
| def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: | |
| r""" | |
| Loads dataset_info.json. | |
| """ | |
| if dataset_dir == "ONLINE": | |
| logger.info("dataset_dir is ONLINE, using online dataset.") | |
| return {} | |
| try: | |
| with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: | |
| return json.load(f) | |
| except Exception as err: | |
| logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) | |
| return {} | |
| def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown": | |
| r""" | |
| Lists all available datasets in the dataset dir for the training stage. | |
| """ | |
| dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) | |
| ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA | |
| datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] | |
| return gr.Dropdown(choices=datasets) | |