Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import TYPE_CHECKING, Dict, Generator, List, Union | |
| from ...extras.constants import PEFT_METHODS | |
| from ...extras.misc import torch_gc | |
| from ...extras.packages import is_gradio_available | |
| from ...train.tuner import export_model | |
| from ..common import get_save_dir | |
| from ..locales import ALERTS | |
| if is_gradio_available(): | |
| import gradio as gr | |
| if TYPE_CHECKING: | |
| from gradio.components import Component | |
| from ..engine import Engine | |
| GPTQ_BITS = ["8", "4", "3", "2"] | |
| def can_quantize(checkpoint_path: Union[str, List[str]]) -> "gr.Dropdown": | |
| if isinstance(checkpoint_path, list) and len(checkpoint_path) != 0: | |
| return gr.Dropdown(value="none", interactive=False) | |
| else: | |
| return gr.Dropdown(interactive=True) | |
| def save_model( | |
| lang: str, | |
| model_name: str, | |
| model_path: str, | |
| finetuning_type: str, | |
| checkpoint_path: Union[str, List[str]], | |
| template: str, | |
| visual_inputs: bool, | |
| export_size: int, | |
| export_quantization_bit: int, | |
| export_quantization_dataset: str, | |
| export_device: str, | |
| export_legacy_format: bool, | |
| export_dir: str, | |
| export_hub_model_id: str, | |
| ) -> Generator[str, None, None]: | |
| error = "" | |
| if not model_name: | |
| error = ALERTS["err_no_model"][lang] | |
| elif not model_path: | |
| error = ALERTS["err_no_path"][lang] | |
| elif not export_dir: | |
| error = ALERTS["err_no_export_dir"][lang] | |
| elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset: | |
| error = ALERTS["err_no_dataset"][lang] | |
| elif export_quantization_bit not in GPTQ_BITS and not checkpoint_path: | |
| error = ALERTS["err_no_adapter"][lang] | |
| elif export_quantization_bit in GPTQ_BITS and isinstance(checkpoint_path, list): | |
| error = ALERTS["err_gptq_lora"][lang] | |
| if error: | |
| gr.Warning(error) | |
| yield error | |
| return | |
| args = dict( | |
| model_name_or_path=model_path, | |
| finetuning_type=finetuning_type, | |
| template=template, | |
| visual_inputs=visual_inputs, | |
| export_dir=export_dir, | |
| export_hub_model_id=export_hub_model_id or None, | |
| export_size=export_size, | |
| export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None, | |
| export_quantization_dataset=export_quantization_dataset, | |
| export_device=export_device, | |
| export_legacy_format=export_legacy_format, | |
| ) | |
| if checkpoint_path: | |
| if finetuning_type in PEFT_METHODS: # list | |
| args["adapter_name_or_path"] = ",".join( | |
| [get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path] | |
| ) | |
| else: # str | |
| args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path) | |
| yield ALERTS["info_exporting"][lang] | |
| export_model(args) | |
| torch_gc() | |
| yield ALERTS["info_exported"][lang] | |
| def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: | |
| with gr.Row(): | |
| export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1) | |
| export_quantization_bit = gr.Dropdown(choices=["none"] + GPTQ_BITS, value="none") | |
| export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") | |
| export_device = gr.Radio(choices=["cpu", "auto"], value="cpu") | |
| export_legacy_format = gr.Checkbox() | |
| with gr.Row(): | |
| export_dir = gr.Textbox() | |
| export_hub_model_id = gr.Textbox() | |
| checkpoint_path: gr.Dropdown = engine.manager.get_elem_by_id("top.checkpoint_path") | |
| checkpoint_path.change(can_quantize, [checkpoint_path], [export_quantization_bit], queue=False) | |
| export_btn = gr.Button() | |
| info_box = gr.Textbox(show_label=False, interactive=False) | |
| export_btn.click( | |
| save_model, | |
| [ | |
| engine.manager.get_elem_by_id("top.lang"), | |
| engine.manager.get_elem_by_id("top.model_name"), | |
| engine.manager.get_elem_by_id("top.model_path"), | |
| engine.manager.get_elem_by_id("top.finetuning_type"), | |
| engine.manager.get_elem_by_id("top.checkpoint_path"), | |
| engine.manager.get_elem_by_id("top.template"), | |
| engine.manager.get_elem_by_id("top.visual_inputs"), | |
| export_size, | |
| export_quantization_bit, | |
| export_quantization_dataset, | |
| export_device, | |
| export_legacy_format, | |
| export_dir, | |
| export_hub_model_id, | |
| ], | |
| [info_box], | |
| ) | |
| return dict( | |
| export_size=export_size, | |
| export_quantization_bit=export_quantization_bit, | |
| export_quantization_dataset=export_quantization_dataset, | |
| export_device=export_device, | |
| export_legacy_format=export_legacy_format, | |
| export_dir=export_dir, | |
| export_hub_model_id=export_hub_model_id, | |
| export_btn=export_btn, | |
| info_box=info_box, | |
| ) | |