Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from huggingface_hub import AsyncInferenceClient | |
| from translatepy import Translator | |
| from gradio_client import Client, handle_file | |
| from PIL import Image | |
| from pathlib import Path | |
| MAX_SEED = np.iinfo(np.int32).max | |
| HF_TOKEN = os.getenv('HF_TOKEN') | |
| HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') | |
| css2=""" | |
| /* Apply dark theme (black background) */ | |
| body { | |
| background-color: #000000; | |
| color: #FFFFFF; | |
| } | |
| /* Style the Gradio interface */ | |
| .gradio-container { | |
| background-color: #000000; | |
| border: 2px solid #FFFFFF; | |
| box-shadow: 0 0 10px rgba(255, 255, 255, 0.1); | |
| } | |
| /* Title and markdown text */ | |
| .gradio-markdown h1, .gradio-markdown h2, .gradio-markdown h3 { | |
| color: #FFFFFF; | |
| } | |
| /* Input boxes (e.g., Textbox) */ | |
| .gradio-textbox input, .gradio-textbox textarea { | |
| background-color: #222222; | |
| color: #FFFFFF; | |
| border: 2px solid #444444; | |
| border-radius: 8px; | |
| padding: 10px; | |
| font-size: 16px; | |
| box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
| transition: 0.3s ease-in-out; | |
| } | |
| .gradio-textbox input:focus, .gradio-textbox textarea:focus { | |
| border-color: #ff00ff; | |
| box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
| } | |
| /* Buttons */ | |
| .gradio-button { | |
| background: linear-gradient(45deg, #ff007f, #ff00ff, #00ff00, #00ffff, #0000ff, #ff8c00); | |
| color: white; | |
| font-weight: bold; | |
| border: 2px solid #444444; | |
| border-radius: 10px; | |
| padding: 12px 20px; | |
| box-shadow: 0 0 15px rgba(255, 255, 255, 0.3); | |
| cursor: pointer; | |
| transition: 0.3s ease-in-out; | |
| font-size: 16px; | |
| text-transform: uppercase; | |
| } | |
| .gradio-button:hover { | |
| background: linear-gradient(45deg, #ff8c00, #00ffff, #ff00ff, #ff007f, #0000ff, #00ff00); | |
| box-shadow: 0 0 20px rgba(255, 255, 255, 0.5); | |
| } | |
| /* Dropdown */ | |
| .gradio-dropdown select { | |
| background-color: #222222; | |
| color: #FFFFFF; | |
| border: 2px solid #444444; | |
| border-radius: 8px; | |
| padding: 8px 12px; | |
| box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
| } | |
| .gradio-dropdown select:focus { | |
| border-color: #ff00ff; | |
| box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
| } | |
| /* Chatbot box */ | |
| .gradio-chatbot { | |
| background-color: #222222; | |
| border: 2px solid #444444; | |
| color: #FFFFFF; | |
| padding: 15px; | |
| border-radius: 12px; | |
| box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); | |
| } | |
| /* Slider */ | |
| .gradio-slider input { | |
| background-color: #222222; | |
| border: 2px solid #444444; | |
| color: #FFFFFF; | |
| border-radius: 8px; | |
| padding: 10px; | |
| box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
| } | |
| .gradio-slider input:focus { | |
| border-color: #ff00ff; | |
| box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
| } | |
| /* Accordion */ | |
| .gradio-accordion { | |
| background-color: #222222; | |
| border: 2px solid #444444; | |
| color: #FFFFFF; | |
| padding: 15px; | |
| border-radius: 12px; | |
| box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); | |
| } | |
| .gradio-accordion-button { | |
| background-color: #444444; | |
| color: #FFFFFF; | |
| border: none; | |
| border-radius: 8px; | |
| padding: 8px 16px; | |
| box-shadow: 0 0 5px rgba(255, 255, 255, 0.1); | |
| transition: 0.3s ease-in-out; | |
| } | |
| .gradio-accordion-button:hover { | |
| background-color: #ff00ff; | |
| box-shadow: 0 0 15px rgba(255, 0, 255, 0.5); | |
| } | |
| /* General hover effect for all Gradio elements */ | |
| .gradio-container *:hover { | |
| box-shadow: 0 0 10px rgba(255, 255, 255, 0.5); | |
| } | |
| /* Animation for glowing neon effect */ | |
| @keyframes neon { | |
| 0% { | |
| text-shadow: 0 0 5px #ff0000, 0 0 10px #ff0000, 0 0 15px #ff0000, 0 0 20px #ff0000, 0 0 25px #ff0000, 0 0 30px #ff0000; | |
| } | |
| 50% { | |
| text-shadow: 0 0 5px #00ff00, 0 0 10px #00ff00, 0 0 15px #00ff00, 0 0 20px #00ff00, 0 0 25px #00ff00, 0 0 30px #00ff00; | |
| } | |
| 100% { | |
| text-shadow: 0 0 5px #0000ff, 0 0 10px #0000ff, 0 0 15px #0000ff, 0 0 20px #0000ff, 0 0 25px #0000ff, 0 0 30px #0000ff; | |
| } | |
| } | |
| /* Apply glowing text effect */ | |
| .gradio-container h1, .gradio-container h2, .gradio-container h3, .gradio-container p { | |
| animation: neon 1.5s ease-in-out infinite alternate; | |
| } | |
| """ | |
| # Define base models | |
| base_models = [ | |
| "black-forest-labs/FLUX.1-schnell", | |
| "black-forest-labs/FLUX.1-DEV", | |
| "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro" | |
| ] | |
| def load_local_loras(lora_directory="lora_models"): | |
| """Load loras from local safetensor files""" | |
| loras_list_custom = [] | |
| if not os.path.exists(lora_directory): | |
| os.makedirs(lora_directory) | |
| print(f"[-] Created lora directory: {lora_directory}") | |
| lora_files = list(Path(lora_directory).glob("*.safetensors")) | |
| for lora_file in lora_files: | |
| lora_name = lora_file.stem | |
| lora_path = str(lora_file.absolute()) | |
| loras_list_custom.append({ | |
| "name": lora_name, | |
| "path": lora_path | |
| }) | |
| print(f"[-] Loaded {len(loras_list_custom)} local loras") | |
| return loras_list_custom | |
| # Function to enable LoRA if selected | |
| def enable_lora(lora_path, basemodel): | |
| print(f"[-] Determining model: LoRA {'enabled' if lora_path else 'disabled'}, base model: {basemodel}") | |
| if not lora_path: | |
| return basemodel | |
| # Configure model with local lora | |
| return { | |
| "model": basemodel, | |
| "lora_weights": lora_path, | |
| "lora_scale": 0.75 # Adjust this value as needed | |
| } | |
| # Function to upscale image | |
| def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
| try: | |
| print(f"[-] Starting upscaling process with factor {upscale_factor} for image {img_path}") | |
| client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
| result = client.predict( | |
| input_image=handle_file(img_path), | |
| prompt=prompt, | |
| negative_prompt="worst quality, low quality, normal quality", | |
| upscale_factor=upscale_factor, | |
| controlnet_scale=0.6, | |
| controlnet_decay=1, | |
| condition_scale=6, | |
| denoise_strength=0.35, | |
| num_inference_steps=18, | |
| solver="DDIM", | |
| api_name="/process" | |
| ) | |
| print(f"[-] Upscaling successful.") | |
| return result[1] # Return upscale image path | |
| except Exception as e: | |
| print(f"[-] Error scaling image: {e}") | |
| return None | |
| # Function to generate image | |
| async def generate_image(prompt, model_config, lora_word, width, height, scales, steps, seed): | |
| try: | |
| if seed == -1: | |
| seed = random.randint(0, MAX_SEED) | |
| seed = int(seed) | |
| print(f"[-] Translating prompt: {prompt}") | |
| text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
| print(f"[-] Generating image with prompt: {text}") | |
| client = AsyncInferenceClient(token=HF_TOKEN) | |
| # Handle both simple model string and lora config | |
| if isinstance(model_config, dict): | |
| print(f"[-] Using model with LoRA: {model_config}") | |
| image = await client.text_to_image( | |
| prompt=text, | |
| height=height, | |
| width=width, | |
| guidance_scale=scales, | |
| num_inference_steps=steps, | |
| model=model_config["model"], | |
| lora_weights=model_config["lora_weights"], | |
| lora_scale=model_config["lora_scale"] | |
| ) | |
| else: | |
| print(f"[-] Using base model: {model_config}") | |
| image = await client.text_to_image( | |
| prompt=text, | |
| height=height, | |
| width=width, | |
| guidance_scale=scales, | |
| num_inference_steps=steps, | |
| model=model_config | |
| ) | |
| return image, seed | |
| except Exception as e: | |
| print(f"[-] Error generating image: {e}") | |
| return None, None | |
| # Main function to generate images and optionally upscale | |
| async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
| print(f"[-] Starting image generation with prompt: {prompt}") | |
| model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
| print(f"[-] Using model: {model}") | |
| image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) | |
| if image is None: | |
| print("[-] Image generation failed.") | |
| return [] | |
| image_path = "temp_image.jpg" | |
| print(f"[-] Saving temporary image to: {image_path}") | |
| image.save(image_path, format="JPEG") | |
| upscale_image_path = None | |
| if process_upscale: | |
| print(f"[-] Processing upscaling with factor: {upscale_factor}") | |
| upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) | |
| if upscale_image_path is not None and os.path.exists(upscale_image_path): | |
| print(f"[-] Upscaling complete. Image saved at: {upscale_image_path}") | |
| return [image_path, upscale_image_path] # Return both images | |
| else: | |
| print("[-] Upscaling failed, upscaled image path not found.") | |
| return [image_path] | |
| # Load local loras | |
| local_loras = load_local_loras() | |
| # Creating Gradio interface | |
| with gr.Blocks(css=css2, theme=IndonesiaTheme()) as WallpaperFluxMaker: | |
| gr.HTML('<div id="banner">β¨ Flux MultiMode Generator + Upscaler β¨</div>') | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| output_res = gr.Gallery( | |
| label="β‘ Flux / Upscaled Image β‘", | |
| elem_id="output-res", | |
| columns=2, | |
| height="auto" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1, elem_id="col-left"): | |
| prompt = gr.Textbox( | |
| label="π Description", | |
| placeholder="Write your prompt in any language, it will be translated to English.", | |
| elem_id="textbox-prompt" | |
| ) | |
| basemodel_choice = gr.Dropdown( | |
| label="πΌοΈ Select Model", | |
| choices=base_models, | |
| value=base_models[0] | |
| ) | |
| # Updated to use local lora paths | |
| lora_model_choice = gr.Dropdown( | |
| label="π¨ Select LoRA", | |
| choices=[lora["path"] for lora in local_loras], | |
| value=local_loras[0]["path"] if local_loras else None | |
| ) | |
| process_lora = gr.Checkbox(label="π¨ Enable LoRA") | |
| process_upscale = gr.Checkbox(label="π Enable Upscaling") | |
| upscale_factor = gr.Radio( | |
| label="π Upscale Factor", | |
| choices=[2, 4, 8], | |
| value=2 | |
| ) | |
| with gr.Column(scale=1, elem_id="col-right"): | |
| with gr.Accordion(label="βοΈ Advanced Options", open=True): | |
| width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) | |
| height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) | |
| scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8) | |
| seed = gr.Number(label="Seed", value=-1) | |
| btn = gr.Button("π Generate Image", elem_id="generate-btn") | |
| btn.click( | |
| fn=gen, | |
| inputs=[ | |
| prompt, basemodel_choice, width, height, scales, steps, seed, | |
| upscale_factor, process_upscale, lora_model_choice, process_lora | |
| ], | |
| outputs=output_res | |
| ) | |
| WallpaperFluxMaker.queue(api_open=True).launch(show_api=True) |