Spaces:
Build error
Build error
Kohaku-Blueleaf
commited on
Commit
·
a4db55a
1
Parent(s):
5140369
first commit
Browse files- app.py +239 -0
- kgen/__init__.py +0 -0
- kgen/__pycache__/__init__.cpython-311.pyc +0 -0
- kgen/__pycache__/generate.cpython-311.pyc +0 -0
- kgen/__pycache__/metainfo.cpython-311.pyc +0 -0
- kgen/formatter.py +0 -0
- kgen/generate.py +117 -0
- kgen/metainfo.py +30 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from time import time_ns
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
import requests as rq
|
| 7 |
+
from llama_cpp import Llama, LLAMA_SPLIT_MODE_NONE
|
| 8 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
| 9 |
+
|
| 10 |
+
from kgen.generate import tag_gen
|
| 11 |
+
from kgen.metainfo import SPECIAL, TARGET
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
MODEL_PATH = "KBlueLeaf/DanTagGen"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@torch.no_grad()
|
| 18 |
+
def get_result(
|
| 19 |
+
text_model: LlamaForCausalLM,
|
| 20 |
+
tokenizer: LlamaTokenizer,
|
| 21 |
+
rating: str = "",
|
| 22 |
+
artist: str = "",
|
| 23 |
+
characters: str = "",
|
| 24 |
+
copyrights: str = "",
|
| 25 |
+
target: str = "long",
|
| 26 |
+
special_tags: list[str] = ["1girl"],
|
| 27 |
+
general: str = "",
|
| 28 |
+
aspect_ratio: float = 0.0,
|
| 29 |
+
blacklist: str = "",
|
| 30 |
+
escape_bracket: bool = False,
|
| 31 |
+
temperature: float = 1.35,
|
| 32 |
+
):
|
| 33 |
+
start = time_ns()
|
| 34 |
+
print("=" * 50, "\n")
|
| 35 |
+
# Use LLM to predict possible summary
|
| 36 |
+
# This prompt allow model itself to make request longer based on what it learned
|
| 37 |
+
# Which will be better for preference sim and pref-sum contrastive scorer
|
| 38 |
+
prompt = f"""
|
| 39 |
+
rating: {rating or '<|empty|>'}
|
| 40 |
+
artist: {artist.strip() or '<|empty|>'}
|
| 41 |
+
characters: {characters.strip() or '<|empty|>'}
|
| 42 |
+
copyrights: {copyrights.strip() or '<|empty|>'}
|
| 43 |
+
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
|
| 44 |
+
target: {'<|' + target + '|>' if target else '<|long|>'}
|
| 45 |
+
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
|
| 46 |
+
""".strip()
|
| 47 |
+
|
| 48 |
+
artist = artist.strip().strip(",").replace("_", " ")
|
| 49 |
+
characters = characters.strip().strip(",").replace("_", " ")
|
| 50 |
+
copyrights = copyrights.strip().strip(",").replace("_", " ")
|
| 51 |
+
special_tags = [tag.strip().replace("_", " ") for tag in special_tags]
|
| 52 |
+
general = general.strip().strip(",")
|
| 53 |
+
black_list = set(
|
| 54 |
+
[tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")]
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
prompt_tags = special_tags + general.strip().strip(",").split(",")
|
| 58 |
+
len_target = TARGET[target]
|
| 59 |
+
llm_gen = ""
|
| 60 |
+
|
| 61 |
+
for llm_gen, extra_tokens in tag_gen(
|
| 62 |
+
text_model,
|
| 63 |
+
tokenizer,
|
| 64 |
+
prompt,
|
| 65 |
+
prompt_tags,
|
| 66 |
+
len_target,
|
| 67 |
+
black_list,
|
| 68 |
+
temperature=temperature,
|
| 69 |
+
top_p=0.95,
|
| 70 |
+
top_k=100,
|
| 71 |
+
max_new_tokens=256,
|
| 72 |
+
max_retry=5,
|
| 73 |
+
):
|
| 74 |
+
yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s"
|
| 75 |
+
print()
|
| 76 |
+
print("-" * 50)
|
| 77 |
+
|
| 78 |
+
general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}"
|
| 79 |
+
tags = general.strip().split(",")
|
| 80 |
+
tags = [tag.strip() for tag in tags if tag.strip()]
|
| 81 |
+
special = special_tags + [tag for tag in tags if tag in SPECIAL]
|
| 82 |
+
tags = [tag for tag in tags if tag not in special]
|
| 83 |
+
|
| 84 |
+
final_prompt = ", ".join(special)
|
| 85 |
+
if characters:
|
| 86 |
+
final_prompt += f", \n\n{characters}"
|
| 87 |
+
if copyrights:
|
| 88 |
+
final_prompt += ", "
|
| 89 |
+
if not characters:
|
| 90 |
+
final_prompt += "\n\n"
|
| 91 |
+
final_prompt += copyrights
|
| 92 |
+
if artist:
|
| 93 |
+
final_prompt += f", \n\n{artist}"
|
| 94 |
+
final_prompt += f""", \n\n{', '.join(tags)},
|
| 95 |
+
|
| 96 |
+
masterpiece, newest, absurdres, {rating}"""
|
| 97 |
+
|
| 98 |
+
print(final_prompt)
|
| 99 |
+
print("=" * 50)
|
| 100 |
+
|
| 101 |
+
if escape_bracket:
|
| 102 |
+
final_prompt = (
|
| 103 |
+
final_prompt.replace("[", "\\[")
|
| 104 |
+
.replace("]", "\\]")
|
| 105 |
+
.replace("(", "\\(")
|
| 106 |
+
.replace(")", "\\)")
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s | Total general tags: {len(special+tags)}"
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
if __name__ == "__main__":
|
| 113 |
+
tokenizer: LlamaTokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH)
|
| 114 |
+
if not os.path.isfile("./model.gguf"):
|
| 115 |
+
data = rq.get("https://huggingface.co/KBlueLeaf/DanTagGen/resolve/main/ggml-model-Q6_K.gguf").content
|
| 116 |
+
with open("./model.gguf", "wb") as f:
|
| 117 |
+
f.write(data)
|
| 118 |
+
text_model = Llama(
|
| 119 |
+
"./model.gguf",
|
| 120 |
+
n_ctx=384,
|
| 121 |
+
verbose=False,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def wrapper(
|
| 125 |
+
rating: str,
|
| 126 |
+
artist: str,
|
| 127 |
+
characters: str,
|
| 128 |
+
copyrights: str,
|
| 129 |
+
target: str,
|
| 130 |
+
special_tags: list[str],
|
| 131 |
+
general: str,
|
| 132 |
+
width: float,
|
| 133 |
+
height: float,
|
| 134 |
+
blacklist: str,
|
| 135 |
+
escape_bracket: bool,
|
| 136 |
+
temperature: float = 1.35,
|
| 137 |
+
):
|
| 138 |
+
yield from get_result(
|
| 139 |
+
text_model,
|
| 140 |
+
tokenizer,
|
| 141 |
+
rating,
|
| 142 |
+
artist,
|
| 143 |
+
characters,
|
| 144 |
+
copyrights,
|
| 145 |
+
target,
|
| 146 |
+
special_tags,
|
| 147 |
+
general,
|
| 148 |
+
width / height,
|
| 149 |
+
blacklist,
|
| 150 |
+
escape_bracket,
|
| 151 |
+
temperature,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column(scale=4):
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Column(scale=2):
|
| 159 |
+
rating = gr.Radio(
|
| 160 |
+
["safe", "sensitive", "nsfw", "nsfw, explicit"],
|
| 161 |
+
label="Rating",
|
| 162 |
+
)
|
| 163 |
+
special_tags = gr.Dropdown(
|
| 164 |
+
SPECIAL,
|
| 165 |
+
value=["1girl"],
|
| 166 |
+
label="Special tags",
|
| 167 |
+
multiselect=True,
|
| 168 |
+
)
|
| 169 |
+
characters = gr.Textbox(label="Characters")
|
| 170 |
+
copyrights = gr.Textbox(label="Copyrights(Series)")
|
| 171 |
+
artist = gr.Textbox(label="Artist")
|
| 172 |
+
target = gr.Radio(
|
| 173 |
+
["very_short", "short", "long", "very_long"],
|
| 174 |
+
label="Target length",
|
| 175 |
+
)
|
| 176 |
+
with gr.Column(scale=2):
|
| 177 |
+
general = gr.TextArea(label="Input your general tags")
|
| 178 |
+
black_list = gr.TextArea(
|
| 179 |
+
label="tag Black list (seperated by comma)"
|
| 180 |
+
)
|
| 181 |
+
with gr.Row():
|
| 182 |
+
width = gr.Slider(
|
| 183 |
+
value=1024,
|
| 184 |
+
minimum=256,
|
| 185 |
+
maximum=4096,
|
| 186 |
+
step=32,
|
| 187 |
+
label="Width",
|
| 188 |
+
)
|
| 189 |
+
height = gr.Slider(
|
| 190 |
+
value=1024,
|
| 191 |
+
minimum=256,
|
| 192 |
+
maximum=4096,
|
| 193 |
+
step=32,
|
| 194 |
+
label="Height",
|
| 195 |
+
)
|
| 196 |
+
with gr.Row():
|
| 197 |
+
temperature = gr.Slider(
|
| 198 |
+
value=1.35,
|
| 199 |
+
minimum=0.1,
|
| 200 |
+
maximum=2,
|
| 201 |
+
step=0.05,
|
| 202 |
+
label="Temperature",
|
| 203 |
+
)
|
| 204 |
+
escape_bracket = gr.Checkbox(
|
| 205 |
+
value=False,
|
| 206 |
+
label="Escape bracket",
|
| 207 |
+
)
|
| 208 |
+
submit = gr.Button("Submit")
|
| 209 |
+
with gr.Column(scale=3):
|
| 210 |
+
formated_result = gr.TextArea(
|
| 211 |
+
label="Final output", lines=14, show_copy_button=True
|
| 212 |
+
)
|
| 213 |
+
llm_result = gr.TextArea(label="LLM output", lines=10)
|
| 214 |
+
cost_time = gr.Markdown()
|
| 215 |
+
submit.click(
|
| 216 |
+
wrapper,
|
| 217 |
+
inputs=[
|
| 218 |
+
rating,
|
| 219 |
+
artist,
|
| 220 |
+
characters,
|
| 221 |
+
copyrights,
|
| 222 |
+
target,
|
| 223 |
+
special_tags,
|
| 224 |
+
general,
|
| 225 |
+
width,
|
| 226 |
+
height,
|
| 227 |
+
black_list,
|
| 228 |
+
temperature,
|
| 229 |
+
escape_bracket,
|
| 230 |
+
],
|
| 231 |
+
outputs=[
|
| 232 |
+
formated_result,
|
| 233 |
+
llm_result,
|
| 234 |
+
cost_time,
|
| 235 |
+
],
|
| 236 |
+
show_progress=True,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
demo.launch()
|
kgen/__init__.py
ADDED
|
File without changes
|
kgen/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (146 Bytes). View file
|
|
|
kgen/__pycache__/generate.cpython-311.pyc
ADDED
|
Binary file (4.93 kB). View file
|
|
|
kgen/__pycache__/metainfo.cpython-311.pyc
ADDED
|
Binary file (483 Bytes). View file
|
|
|
kgen/formatter.py
ADDED
|
File without changes
|
kgen/generate.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from contextlib import nullcontext
|
| 2 |
+
from random import shuffle
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
from transformers import GenerationConfig, PreTrainedModel, PreTrainedTokenizerBase
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def generate(
|
| 10 |
+
model: PreTrainedModel | Llama,
|
| 11 |
+
tokenizer: PreTrainedTokenizerBase,
|
| 12 |
+
prompt="",
|
| 13 |
+
temperature=0.5,
|
| 14 |
+
top_p=0.95,
|
| 15 |
+
top_k=45,
|
| 16 |
+
repetition_penalty=1.17,
|
| 17 |
+
max_new_tokens=128,
|
| 18 |
+
autocast_gen=lambda: torch.autocast("cpu", enabled=False),
|
| 19 |
+
**kwargs,
|
| 20 |
+
):
|
| 21 |
+
if isinstance(model, Llama):
|
| 22 |
+
result = model.create_completion(
|
| 23 |
+
prompt,
|
| 24 |
+
temperature=temperature,
|
| 25 |
+
top_p=top_p,
|
| 26 |
+
top_k=top_k,
|
| 27 |
+
max_tokens=max_new_tokens,
|
| 28 |
+
repeat_penalty=repetition_penalty or 1,
|
| 29 |
+
)
|
| 30 |
+
return prompt + result["choices"][0]["text"]
|
| 31 |
+
|
| 32 |
+
torch.cuda.empty_cache()
|
| 33 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 34 |
+
input_ids = inputs["input_ids"].to(next(model.parameters()).device)
|
| 35 |
+
generation_config = GenerationConfig(
|
| 36 |
+
temperature=temperature,
|
| 37 |
+
top_p=top_p,
|
| 38 |
+
top_k=top_k,
|
| 39 |
+
repetition_penalty=repetition_penalty,
|
| 40 |
+
do_sample=True,
|
| 41 |
+
**kwargs,
|
| 42 |
+
)
|
| 43 |
+
with torch.no_grad(), autocast_gen():
|
| 44 |
+
generation_output = model.generate(
|
| 45 |
+
input_ids=input_ids,
|
| 46 |
+
generation_config=generation_config,
|
| 47 |
+
return_dict_in_generate=True,
|
| 48 |
+
output_scores=True,
|
| 49 |
+
max_new_tokens=max_new_tokens,
|
| 50 |
+
)
|
| 51 |
+
s = generation_output.sequences[0]
|
| 52 |
+
output = tokenizer.decode(s)
|
| 53 |
+
|
| 54 |
+
torch.cuda.empty_cache()
|
| 55 |
+
return output
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def tag_gen(
|
| 59 |
+
text_model,
|
| 60 |
+
tokenizer,
|
| 61 |
+
prompt,
|
| 62 |
+
prompt_tags,
|
| 63 |
+
len_target,
|
| 64 |
+
black_list,
|
| 65 |
+
temperature=0.5,
|
| 66 |
+
top_p=0.95,
|
| 67 |
+
top_k=100,
|
| 68 |
+
max_new_tokens=256,
|
| 69 |
+
max_retry=5,
|
| 70 |
+
):
|
| 71 |
+
prev_len = 0
|
| 72 |
+
retry = max_retry
|
| 73 |
+
llm_gen = ""
|
| 74 |
+
|
| 75 |
+
while True:
|
| 76 |
+
llm_gen = generate(
|
| 77 |
+
model=text_model,
|
| 78 |
+
tokenizer=tokenizer,
|
| 79 |
+
prompt=prompt,
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
top_p=top_p,
|
| 82 |
+
top_k=top_k,
|
| 83 |
+
repetition_penalty=None,
|
| 84 |
+
max_new_tokens=max_new_tokens,
|
| 85 |
+
stream_output=False,
|
| 86 |
+
autocast_gen=nullcontext,
|
| 87 |
+
prompt_lookup_num_tokens=10,
|
| 88 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 89 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 90 |
+
)
|
| 91 |
+
llm_gen = llm_gen.replace("</s>", "").replace("<s>", "")
|
| 92 |
+
extra = llm_gen.split("<|input_end|>")[-1].strip().strip(",")
|
| 93 |
+
extra_tokens = list(
|
| 94 |
+
set(
|
| 95 |
+
[
|
| 96 |
+
tok.strip()
|
| 97 |
+
for tok in extra.split(",")
|
| 98 |
+
if tok.strip() not in black_list
|
| 99 |
+
]
|
| 100 |
+
)
|
| 101 |
+
)
|
| 102 |
+
llm_gen = llm_gen.replace(extra, ", ".join(extra_tokens))
|
| 103 |
+
|
| 104 |
+
yield llm_gen, extra_tokens
|
| 105 |
+
|
| 106 |
+
if len(prompt_tags) + len(extra_tokens) < len_target:
|
| 107 |
+
if len(extra_tokens) == prev_len and prev_len > 0:
|
| 108 |
+
if retry < 0:
|
| 109 |
+
break
|
| 110 |
+
retry -= 1
|
| 111 |
+
shuffle(extra_tokens)
|
| 112 |
+
retry = max_retry
|
| 113 |
+
prev_len = len(extra_tokens)
|
| 114 |
+
prompt = llm_gen.strip().replace(" <|", " <|")
|
| 115 |
+
else:
|
| 116 |
+
break
|
| 117 |
+
yield llm_gen, extra_tokens
|
kgen/metainfo.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SPECIAL = [
|
| 2 |
+
"1girl",
|
| 3 |
+
"2girls",
|
| 4 |
+
"3girls",
|
| 5 |
+
"4girls",
|
| 6 |
+
"5girls",
|
| 7 |
+
"6+girls",
|
| 8 |
+
"multiple_girls",
|
| 9 |
+
"1boy",
|
| 10 |
+
"2boys",
|
| 11 |
+
"3boys",
|
| 12 |
+
"4boys",
|
| 13 |
+
"5boys",
|
| 14 |
+
"6+boys",
|
| 15 |
+
"multiple_boys",
|
| 16 |
+
"male_focus",
|
| 17 |
+
"1other",
|
| 18 |
+
"2others",
|
| 19 |
+
"3others",
|
| 20 |
+
"4others",
|
| 21 |
+
"5others",
|
| 22 |
+
"6+others",
|
| 23 |
+
"multiple_others",
|
| 24 |
+
]
|
| 25 |
+
TARGET = {
|
| 26 |
+
"very_short": 10,
|
| 27 |
+
"short": 20,
|
| 28 |
+
"long": 40,
|
| 29 |
+
"very_long": 60,
|
| 30 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
llama-cpp-python
|
| 3 |
+
gradio
|
| 4 |
+
requests
|