Spaces:
Running
on
Zero
Running
on
Zero
Kohaku-Blueleaf
commited on
Commit
·
3b57e92
1
Parent(s):
155fc84
app
Browse files
app.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import httpx
|
| 8 |
+
if os.environ.get("IN_SPACES", None) is not None:
|
| 9 |
+
in_spaces = True
|
| 10 |
+
import spaces
|
| 11 |
+
else:
|
| 12 |
+
in_spaces = False
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from safetensors.torch import load_file
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from tqdm import trange
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
# pre-import triton can avoid diffusers/transformers make import error
|
| 23 |
+
import triton
|
| 24 |
+
except ImportError:
|
| 25 |
+
print("Triton not found, skip pre import")
|
| 26 |
+
|
| 27 |
+
torch.set_float32_matmul_precision("high")
|
| 28 |
+
|
| 29 |
+
## HDM model dep
|
| 30 |
+
import xut.env
|
| 31 |
+
xut.env.TORCH_COMPILE = False
|
| 32 |
+
xut.env.USE_LIGER = True
|
| 33 |
+
xut.env.USE_XFORMERS = False
|
| 34 |
+
xut.env.USE_XFORMERS_LAYERS = False
|
| 35 |
+
from xut.xut import XUDiT
|
| 36 |
+
from transformers import Qwen3Model, Qwen2Tokenizer
|
| 37 |
+
from diffusers import AutoencoderKL
|
| 38 |
+
|
| 39 |
+
## TIPO
|
| 40 |
+
import kgen.models as kgen_models
|
| 41 |
+
import kgen.executor.tipo as tipo
|
| 42 |
+
from kgen.formatter import apply_format, seperate_tags
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
DEFAULT_FORMAT = """
|
| 46 |
+
<|special|>,
|
| 47 |
+
<|characters|>, <|copyrights|>,
|
| 48 |
+
<|artist|>,
|
| 49 |
+
<|quality|>, <|meta|>, <|rating|>,
|
| 50 |
+
|
| 51 |
+
<|general|>,
|
| 52 |
+
|
| 53 |
+
<|extended|>.
|
| 54 |
+
""".strip()
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def GPU(func, duration=None):
|
| 58 |
+
if in_spaces:
|
| 59 |
+
return spaces.GPU(func, duration)
|
| 60 |
+
else:
|
| 61 |
+
return func
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def download_model(url: str, filepath: str):
|
| 65 |
+
"""Minimal fast download function"""
|
| 66 |
+
if Path(filepath).exists():
|
| 67 |
+
print(f"Model already exists at {filepath}")
|
| 68 |
+
return
|
| 69 |
+
|
| 70 |
+
print(f"Downloading model from {url}...")
|
| 71 |
+
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
|
| 72 |
+
|
| 73 |
+
with httpx.stream("GET", url, follow_redirects=True) as response:
|
| 74 |
+
response.raise_for_status()
|
| 75 |
+
with open(filepath, "wb") as f:
|
| 76 |
+
for chunk in response.iter_bytes(chunk_size=128 * 1024):
|
| 77 |
+
f.write(chunk)
|
| 78 |
+
print(f"Download completed: {filepath}")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def prompt_opt(tags, nl_prompt, aspect_ratio, seed):
|
| 82 |
+
meta, operations, general, nl_prompt = tipo.parse_tipo_request(
|
| 83 |
+
seperate_tags(tags.split(",")),
|
| 84 |
+
nl_prompt,
|
| 85 |
+
tag_length_target="long",
|
| 86 |
+
nl_length_target="short",
|
| 87 |
+
generate_extra_nl_prompt=True,
|
| 88 |
+
)
|
| 89 |
+
meta["aspect_ratio"] = f"{aspect_ratio:.3f}"
|
| 90 |
+
result, timing = tipo.tipo_runner(meta, operations, general, nl_prompt, seed=seed)
|
| 91 |
+
return apply_format(result, DEFAULT_FORMAT).strip().strip(".").strip(",")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# --- User's core functions (copied directly) ---
|
| 95 |
+
def cfg_wrapper(
|
| 96 |
+
prompt: str | list[str],
|
| 97 |
+
neg_prompt: str | list[str],
|
| 98 |
+
unet: nn.Module, # should be k_diffusion wrapper
|
| 99 |
+
te: Qwen3Model,
|
| 100 |
+
tokenizer: Qwen2Tokenizer,
|
| 101 |
+
cfg_scale: float = 3.0,
|
| 102 |
+
):
|
| 103 |
+
prompt_token = {
|
| 104 |
+
k: v.to(device)
|
| 105 |
+
for k, v in
|
| 106 |
+
tokenizer(
|
| 107 |
+
prompt,
|
| 108 |
+
padding="longest",
|
| 109 |
+
return_tensors="pt",
|
| 110 |
+
).items()
|
| 111 |
+
}
|
| 112 |
+
neg_prompt_token = {
|
| 113 |
+
k: v.to(device)
|
| 114 |
+
for k, v in
|
| 115 |
+
tokenizer(
|
| 116 |
+
neg_prompt,
|
| 117 |
+
padding="longest",
|
| 118 |
+
return_tensors="pt",
|
| 119 |
+
).items()
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
emb = te(**prompt_token).last_hidden_state
|
| 123 |
+
neg_emb = te(**neg_prompt_token).last_hidden_state
|
| 124 |
+
|
| 125 |
+
if emb.size(1) > neg_emb.size(1):
|
| 126 |
+
pad_setting = (0, 0, 0, emb.size(1) - neg_emb.size(1))
|
| 127 |
+
neg_emb = F.pad(neg_emb, pad_setting)
|
| 128 |
+
if neg_emb.size(1) > emb.size(1):
|
| 129 |
+
pad_setting = (0, 0, 0, neg_emb.size(1) - emb.size(1))
|
| 130 |
+
emb = F.pad(emb, pad_setting)
|
| 131 |
+
text_ctx_emb = torch.concat([emb, neg_emb])
|
| 132 |
+
|
| 133 |
+
def cfg_fn(x, t, cfg=cfg_scale):
|
| 134 |
+
cond, uncond = unet(
|
| 135 |
+
x.repeat(2, 1, 1, 1),
|
| 136 |
+
t.expand(x.size(0) * 2),
|
| 137 |
+
text_ctx_emb,
|
| 138 |
+
).chunk(2)
|
| 139 |
+
cond = cond.float()
|
| 140 |
+
uncond = uncond.float()
|
| 141 |
+
return uncond + (cond - uncond) * cfg
|
| 142 |
+
|
| 143 |
+
return cfg_fn
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
print("Loading models, please wait...")
|
| 148 |
+
device = torch.device("cuda")
|
| 149 |
+
print("Using device:", torch.cuda.get_device_name(device))
|
| 150 |
+
|
| 151 |
+
model = XUDiT(
|
| 152 |
+
**json.load(open("./config/xut-small-1024-tread.json", "r"))
|
| 153 |
+
).half().requires_grad_(False).eval().to(device)
|
| 154 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(
|
| 155 |
+
"Qwen/Qwen3-0.6B",
|
| 156 |
+
)
|
| 157 |
+
te = Qwen3Model.from_pretrained(
|
| 158 |
+
"Qwen/Qwen3-0.6B",
|
| 159 |
+
torch_dtype=torch.float16,
|
| 160 |
+
attn_implementation="sdpa"
|
| 161 |
+
).half().eval().requires_grad_(False).to(device)
|
| 162 |
+
vae = AutoencoderKL.from_pretrained(
|
| 163 |
+
"KBlueLeaf/EQ-SDXL-VAE"
|
| 164 |
+
).half().eval().requires_grad_(False).to(device)
|
| 165 |
+
vae_mean = torch.tensor(vae.config.latents_mean).view(1, -1, 1, 1).to(device)
|
| 166 |
+
vae_std = torch.tensor(vae.config.latents_std).view(1, -1, 1, 1).to(device)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
if not os.path.exists("./model/model.safetensors"):
|
| 170 |
+
model_url = os.environ.get("MODEL_URL")
|
| 171 |
+
download_model(model_url, "./model/model.safetensors")
|
| 172 |
+
|
| 173 |
+
state_dict = load_file("./model/model.safetensors")
|
| 174 |
+
model_sd = {k.replace("unet.", ""): v for k, v in state_dict.items() if k.startswith("unet.")}
|
| 175 |
+
model_sd = {k.replace("model.", ""): v for k, v in model_sd.items()}
|
| 176 |
+
missing, unexpected = model.load_state_dict(model_sd, strict=False)
|
| 177 |
+
if missing:
|
| 178 |
+
print(f"Missing keys: {missing}")
|
| 179 |
+
if unexpected:
|
| 180 |
+
print(f"Unexpected keys: {unexpected}")
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
tipo_model_name, gguf_list = kgen_models.tipo_model_list[0]
|
| 184 |
+
kgen_models.download_gguf(
|
| 185 |
+
tipo_model_name,
|
| 186 |
+
gguf_list[-1],
|
| 187 |
+
)
|
| 188 |
+
kgen_models.load_model(
|
| 189 |
+
f"{tipo_model_name}_{gguf_list[-1]}", gguf=True, device="cpu"
|
| 190 |
+
)
|
| 191 |
+
print("Models loaded successfully. UI is ready.")
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
@GPU
|
| 195 |
+
@torch.no_grad()
|
| 196 |
+
def generate(
|
| 197 |
+
nl_prompt: str,
|
| 198 |
+
tag_prompt: str,
|
| 199 |
+
negative_prompt: str,
|
| 200 |
+
num_images: int,
|
| 201 |
+
steps: int,
|
| 202 |
+
cfg_scale: float,
|
| 203 |
+
size: int,
|
| 204 |
+
aspect_ratio: str,
|
| 205 |
+
fixed_short_edge: bool,
|
| 206 |
+
seed: int,
|
| 207 |
+
progress=gr.Progress(),
|
| 208 |
+
):
|
| 209 |
+
as_w, as_h = aspect_ratio.split(":")
|
| 210 |
+
aspect_ratio = float(as_w) / float(as_h)
|
| 211 |
+
# Set seed for reproducibility
|
| 212 |
+
if seed == -1:
|
| 213 |
+
seed = random.randint(0, 2**32 - 1)
|
| 214 |
+
torch.manual_seed(seed)
|
| 215 |
+
|
| 216 |
+
# TIPO
|
| 217 |
+
tipo.BAN_TAGS = [i.strip() for i in negative_prompt.split(",") if i.strip()]
|
| 218 |
+
final_prompt = prompt_opt(tag_prompt, nl_prompt, aspect_ratio, seed)
|
| 219 |
+
yield None, final_prompt
|
| 220 |
+
all_pil_images = []
|
| 221 |
+
|
| 222 |
+
prompts_to_generate = [final_prompt.replace("\n", " ")] * num_images
|
| 223 |
+
negative_prompts_to_generate = [negative_prompt] * num_images
|
| 224 |
+
|
| 225 |
+
if fixed_short_edge:
|
| 226 |
+
if aspect_ratio > 1:
|
| 227 |
+
h_factor = 1
|
| 228 |
+
w_factor = aspect_ratio
|
| 229 |
+
else:
|
| 230 |
+
h_factor = 1 / aspect_ratio
|
| 231 |
+
w_factor = 1
|
| 232 |
+
else:
|
| 233 |
+
w_factor = aspect_ratio**0.5
|
| 234 |
+
h_factor = 1 / w_factor
|
| 235 |
+
|
| 236 |
+
w = int(size * w_factor / 16) * 2
|
| 237 |
+
h = int(size * h_factor / 16) * 2
|
| 238 |
+
|
| 239 |
+
print("=" * 100)
|
| 240 |
+
print(
|
| 241 |
+
f"Generating {num_images} image(s) with seed: {seed} and resolution {w*8}x{h*8}"
|
| 242 |
+
)
|
| 243 |
+
print("-" * 80)
|
| 244 |
+
print(f"Final prompt: {final_prompt}")
|
| 245 |
+
print("-" * 80)
|
| 246 |
+
print(f"Negative prompt: {negative_prompt}")
|
| 247 |
+
print("-" * 80)
|
| 248 |
+
|
| 249 |
+
prompts_batch = prompts_to_generate
|
| 250 |
+
neg_prompts_batch = negative_prompts_to_generate
|
| 251 |
+
|
| 252 |
+
# Core logic from the original script
|
| 253 |
+
cfg_fn = cfg_wrapper(
|
| 254 |
+
prompts_batch,
|
| 255 |
+
neg_prompts_batch,
|
| 256 |
+
unet=model,
|
| 257 |
+
te=te,
|
| 258 |
+
tokenizer=tokenizer,
|
| 259 |
+
cfg_scale=cfg_scale,
|
| 260 |
+
)
|
| 261 |
+
xt = torch.randn(num_images, 4, h, w).to(device)
|
| 262 |
+
|
| 263 |
+
t = 1.0
|
| 264 |
+
dt = 1.0 / steps
|
| 265 |
+
with trange(steps, desc="Generating Steps", smoothing=0.05) as cli_prog_bar:
|
| 266 |
+
for step in progress.tqdm(list(range(steps)), desc="Generating Steps"):
|
| 267 |
+
with torch.autocast(device.type, dtype=torch.float16):
|
| 268 |
+
model_pred = cfg_fn(xt, torch.tensor(t, device=device))
|
| 269 |
+
xt = xt - dt * model_pred.float()
|
| 270 |
+
t -= dt
|
| 271 |
+
cli_prog_bar.update(1)
|
| 272 |
+
|
| 273 |
+
generated_latents = xt.float()
|
| 274 |
+
image_tensors = torch.concat(
|
| 275 |
+
[
|
| 276 |
+
vae.decode(
|
| 277 |
+
(
|
| 278 |
+
generated_latent[None] * vae_std
|
| 279 |
+
+ vae_mean
|
| 280 |
+
).half()
|
| 281 |
+
).sample.cpu()
|
| 282 |
+
for generated_latent in generated_latents
|
| 283 |
+
]
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
# Convert tensors to PIL images
|
| 287 |
+
for image_tensor in image_tensors:
|
| 288 |
+
image = Image.fromarray(
|
| 289 |
+
((image_tensor * 0.5 + 0.5) * 255)
|
| 290 |
+
.clamp(0, 255)
|
| 291 |
+
.numpy()
|
| 292 |
+
.astype(np.uint8)
|
| 293 |
+
.transpose(1, 2, 0)
|
| 294 |
+
)
|
| 295 |
+
all_pil_images.append(image)
|
| 296 |
+
|
| 297 |
+
yield all_pil_images, final_prompt
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
# --- Gradio UI Definition ---
|
| 301 |
+
with gr.Blocks(css="footer {display: none !important}") as demo:
|
| 302 |
+
gr.Markdown("# HomeDiffusion Gradio UI")
|
| 303 |
+
gr.Markdown(
|
| 304 |
+
"### Enter a natural language prompt and/or specific tags to generate an image."
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
with gr.Row():
|
| 308 |
+
with gr.Column(scale=2):
|
| 309 |
+
nl_prompt_box = gr.Textbox(
|
| 310 |
+
label="Natural Language Prompt",
|
| 311 |
+
placeholder="e.g., A beautiful anime girl standing in a blooming cherry blossom forest",
|
| 312 |
+
lines=3,
|
| 313 |
+
)
|
| 314 |
+
tag_prompt_box = gr.Textbox(
|
| 315 |
+
label="Tag Prompt (comma-separated)",
|
| 316 |
+
placeholder="e.g., 1girl, solo, long hair, cherry blossoms, school uniform",
|
| 317 |
+
lines=3,
|
| 318 |
+
)
|
| 319 |
+
neg_prompt_box = gr.Textbox(
|
| 320 |
+
label="Negative Prompt",
|
| 321 |
+
value=(
|
| 322 |
+
"low quality, worst quality, "
|
| 323 |
+
"jpeg artifacts, bad anatomy, old, early, "
|
| 324 |
+
"copyright name, watermark"
|
| 325 |
+
),
|
| 326 |
+
lines=3,
|
| 327 |
+
)
|
| 328 |
+
with gr.Column(scale=1):
|
| 329 |
+
with gr.Row():
|
| 330 |
+
num_images_slider = gr.Slider(
|
| 331 |
+
label="Number of Images", minimum=1, maximum=16, value=1, step=1
|
| 332 |
+
)
|
| 333 |
+
steps_slider = gr.Slider(
|
| 334 |
+
label="Inference Steps", minimum=1, maximum=50, value=32, step=1
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
with gr.Row():
|
| 338 |
+
cfg_slider = gr.Slider(
|
| 339 |
+
label="CFG Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
|
| 340 |
+
)
|
| 341 |
+
seed_input = gr.Number(
|
| 342 |
+
label="Seed",
|
| 343 |
+
value=-1,
|
| 344 |
+
precision=0,
|
| 345 |
+
info="Set to -1 for a random seed.",
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
with gr.Row():
|
| 349 |
+
size_slider = gr.Slider(
|
| 350 |
+
label="Base Image Size",
|
| 351 |
+
minimum=384,
|
| 352 |
+
maximum=768,
|
| 353 |
+
value=512,
|
| 354 |
+
step=64,
|
| 355 |
+
)
|
| 356 |
+
with gr.Row():
|
| 357 |
+
aspect_ratio_box = gr.Textbox(
|
| 358 |
+
label="Ratio (W:H)",
|
| 359 |
+
value="1:1",
|
| 360 |
+
)
|
| 361 |
+
fixed_short_edge = gr.Checkbox(
|
| 362 |
+
label="Fixed Edge",
|
| 363 |
+
value=True,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
generate_button = gr.Button("Generate", variant="primary")
|
| 367 |
+
|
| 368 |
+
with gr.Row():
|
| 369 |
+
with gr.Column(scale=1):
|
| 370 |
+
output_prompt = gr.TextArea(
|
| 371 |
+
label="TIPO Generated Prompt",
|
| 372 |
+
show_label=True,
|
| 373 |
+
interactive=False,
|
| 374 |
+
lines=32,
|
| 375 |
+
max_lines=32,
|
| 376 |
+
)
|
| 377 |
+
with gr.Column(scale=2):
|
| 378 |
+
output_gallery = gr.Gallery(
|
| 379 |
+
label="Generated Images",
|
| 380 |
+
show_label=True,
|
| 381 |
+
elem_id="gallery",
|
| 382 |
+
columns=4,
|
| 383 |
+
rows=3,
|
| 384 |
+
height="800px",
|
| 385 |
+
)
|
| 386 |
+
gr.Markdown("Images are also saved to the `inference_output/` folder.")
|
| 387 |
+
|
| 388 |
+
generate_button.click(
|
| 389 |
+
fn=generate,
|
| 390 |
+
inputs=[
|
| 391 |
+
nl_prompt_box,
|
| 392 |
+
tag_prompt_box,
|
| 393 |
+
neg_prompt_box,
|
| 394 |
+
num_images_slider,
|
| 395 |
+
steps_slider,
|
| 396 |
+
cfg_slider,
|
| 397 |
+
size_slider,
|
| 398 |
+
aspect_ratio_box,
|
| 399 |
+
fixed_short_edge,
|
| 400 |
+
seed_input,
|
| 401 |
+
],
|
| 402 |
+
outputs=[output_gallery, output_prompt],
|
| 403 |
+
show_progress_on=output_gallery,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
if __name__ == "__main__":
|
| 407 |
+
demo.launch()
|