KeXing
commited on
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
|
|
|
| 3 |
|
|
|
|
| 4 |
from tape import ProteinBertModel, ProteinBertConfig, TAPETokenizer # type: ignore
|
| 5 |
from tape.models import modeling_bert
|
| 6 |
import numpy as np
|
|
@@ -14,14 +17,11 @@ bert_model = torch.load('models/transformer1500_95p_500.pt')
|
|
| 14 |
class_model=torch.load('models/down_model_500_kfold1.pt')
|
| 15 |
|
| 16 |
bert_model=bert_model.module
|
| 17 |
-
bert_model=bert_model.to(
|
| 18 |
bert_model=bert_model.eval()
|
| 19 |
|
| 20 |
|
| 21 |
-
|
| 22 |
-
def greet(name):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
translation_table = str.maketrans("", "", " \t\n\r\f\v")
|
| 27 |
name = name.translate(translation_table)
|
|
@@ -36,14 +36,85 @@ def greet(name):
|
|
| 36 |
return "cluster "+str(cluster)
|
| 37 |
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
-
demo = gr.Interface(
|
| 43 |
-
fn=greet,
|
| 44 |
-
# 自定义输入框
|
| 45 |
-
# 具体设置方法查看官方文档
|
| 46 |
-
inputs=gr.Textbox(lines=3, placeholder="",label="Paste a protein sequence in plain text (not in FASTA format)"),
|
| 47 |
-
outputs=gr.Textbox(lines=3, placeholder="",label="Cluster prediction"),
|
| 48 |
-
)
|
| 49 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
|
| 4 |
+
import io
|
| 5 |
|
| 6 |
+
from Bio import SeqIO
|
| 7 |
from tape import ProteinBertModel, ProteinBertConfig, TAPETokenizer # type: ignore
|
| 8 |
from tape.models import modeling_bert
|
| 9 |
import numpy as np
|
|
|
|
| 17 |
class_model=torch.load('models/down_model_500_kfold1.pt')
|
| 18 |
|
| 19 |
bert_model=bert_model.module
|
| 20 |
+
bert_model=bert_model.to("cpu")
|
| 21 |
bert_model=bert_model.eval()
|
| 22 |
|
| 23 |
|
| 24 |
+
def func(name):
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
translation_table = str.maketrans("", "", " \t\n\r\f\v")
|
| 27 |
name = name.translate(translation_table)
|
|
|
|
| 36 |
return "cluster "+str(cluster)
|
| 37 |
|
| 38 |
|
| 39 |
+
def func_mult(name):
|
| 40 |
+
sequence_list = name.split("\n")
|
| 41 |
+
sequence_list = [s.strip() for s in sequence_list]
|
| 42 |
+
sequence_list = [x for x in sequence_list if x] # 列表推导式
|
| 43 |
+
output=[]
|
| 44 |
+
for i in range(0, len(sequence_list), 1):
|
| 45 |
+
output.append(func(sequence_list[i]))
|
| 46 |
+
result = "\n".join(output)
|
| 47 |
+
return result
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def read_fasta_file(file_path):
|
| 51 |
+
sequences = []
|
| 52 |
+
for seq_record in SeqIO.parse(file_path, "fasta"):
|
| 53 |
+
sequences.append(str(seq_record.seq))
|
| 54 |
+
return sequences
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def func_file(file_path):
|
| 58 |
+
sequence_list = read_fasta_file(file_path)
|
| 59 |
+
output=[]
|
| 60 |
+
for i in range(0, len(sequence_list), 1):
|
| 61 |
+
output.append(func(sequence_list[i]))
|
| 62 |
+
result = "\n".join(output)
|
| 63 |
+
return result
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def upload_file(files):
|
| 67 |
+
file_paths = [file.name for file in files]
|
| 68 |
+
return file_paths[0]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def save_to_txt(data):
|
| 72 |
+
# 写入数据到 TXT 文件
|
| 73 |
+
file_name="output.txt"
|
| 74 |
+
with open(file_name, mode='w') as file:
|
| 75 |
+
file.write(data)
|
| 76 |
+
|
| 77 |
+
# 返回文件路径
|
| 78 |
+
return file_name
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
css = """
|
| 82 |
+
.gradio-container {background-color: #EDEFF7}
|
| 83 |
+
.button {background-color: #515D90; color:#FFFFFF}
|
| 84 |
+
.feedback {font-size: 36px}
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
with gr.Blocks(css=css, title="GH29 Prediction", theme=gr.themes.Soft()) as demo:
|
| 88 |
+
gr.Markdown("GH29 Prediction", elem_classes="feedback")
|
| 89 |
+
|
| 90 |
+
# 创建一个包含Markdown说明的示例块
|
| 91 |
+
|
| 92 |
+
with gr.Tab("Single sequence input"):
|
| 93 |
+
with gr.Row():
|
| 94 |
+
single_input = gr.Textbox(lines=10, placeholder="Please input sequence data (note: do not input fasta data)", label="Input")
|
| 95 |
+
single_output = gr.Textbox(lines=10, label="Output", show_copy_button=True)
|
| 96 |
+
single_button = gr.Button("Predict", elem_classes="button")
|
| 97 |
+
|
| 98 |
+
with gr.Tab("Multiple sequence input"):
|
| 99 |
+
multiple_input = gr.Textbox(lines=10, placeholder="Please enter multiple sequence data separated by line breaks (do not enter fasta data)", label="Input")
|
| 100 |
+
multiple_button = gr.Button("Predict", elem_classes="button")
|
| 101 |
+
multiple_output = gr.Textbox(lines=10, label="Output", show_copy_button=True)
|
| 102 |
+
|
| 103 |
+
with gr.Tab("FASTA input"):
|
| 104 |
+
with gr.Row():
|
| 105 |
+
file_upload = gr.File(label="Fasta File", interactive=False, scale=2)
|
| 106 |
+
file_output_textbox = gr.Textbox(lines=15, label="Output", scale=3, container=True, autoscroll=True, show_copy_button=True)
|
| 107 |
+
file_output_file = gr.File(label="Output File", scale=2)
|
| 108 |
+
with gr.Row():
|
| 109 |
+
upload_button = gr.UploadButton("Click to Upload a File", file_types=["fasta"], scale=2, size="sm", file_count="multiple")
|
| 110 |
+
upload_button.upload(upload_file, upload_button, file_upload)
|
| 111 |
+
file_button = gr.Button("Predict", scale=3, size="lg", elem_classes="button")
|
| 112 |
+
file_button_GenerateFile = gr.Button("Save to file", scale=2, size="sm")
|
| 113 |
|
| 114 |
+
single_button.click(func, inputs=single_input, outputs=single_output)
|
| 115 |
+
multiple_button.click(func_mult, inputs=multiple_input, outputs=multiple_output)
|
| 116 |
+
file_button.click(func_file, inputs=file_upload, outputs=file_output_textbox)
|
| 117 |
+
file_button_GenerateFile.click(save_to_txt, inputs=file_output_textbox, outputs=file_output_file)
|
| 118 |
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
demo.launch(share=True)
|