Spaces:
Running
Running
| import torch | |
| from torch import nn | |
| class TimeDepthSeparableConv(nn.Module): | |
| """Time depth separable convolution as in https://arxiv.org/pdf/1904.02619.pdf | |
| It shows competative results with less computation and memory footprint.""" | |
| def __init__(self, in_channels, hid_channels, out_channels, kernel_size, bias=True): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hid_channels = hid_channels | |
| self.kernel_size = kernel_size | |
| self.time_conv = nn.Conv1d( | |
| in_channels, | |
| 2 * hid_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| self.norm1 = nn.BatchNorm1d(2 * hid_channels) | |
| self.depth_conv = nn.Conv1d( | |
| hid_channels, | |
| hid_channels, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| groups=hid_channels, | |
| bias=bias, | |
| ) | |
| self.norm2 = nn.BatchNorm1d(hid_channels) | |
| self.time_conv2 = nn.Conv1d( | |
| hid_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| self.norm3 = nn.BatchNorm1d(out_channels) | |
| def forward(self, x): | |
| x_res = x | |
| x = self.time_conv(x) | |
| x = self.norm1(x) | |
| x = nn.functional.glu(x, dim=1) | |
| x = self.depth_conv(x) | |
| x = self.norm2(x) | |
| x = x * torch.sigmoid(x) | |
| x = self.time_conv2(x) | |
| x = self.norm3(x) | |
| x = x_res + x | |
| return x | |
| class TimeDepthSeparableConvBlock(nn.Module): | |
| def __init__(self, in_channels, hid_channels, out_channels, num_layers, kernel_size, bias=True): | |
| super().__init__() | |
| assert (kernel_size - 1) % 2 == 0 | |
| assert num_layers > 1 | |
| self.layers = nn.ModuleList() | |
| layer = TimeDepthSeparableConv( | |
| in_channels, hid_channels, out_channels if num_layers == 1 else hid_channels, kernel_size, bias | |
| ) | |
| self.layers.append(layer) | |
| for idx in range(num_layers - 1): | |
| layer = TimeDepthSeparableConv( | |
| hid_channels, | |
| hid_channels, | |
| out_channels if (idx + 1) == (num_layers - 1) else hid_channels, | |
| kernel_size, | |
| bias, | |
| ) | |
| self.layers.append(layer) | |
| def forward(self, x, mask): | |
| for layer in self.layers: | |
| x = layer(x * mask) | |
| return x | |