Spaces:
Running
Running
| import os | |
| import time | |
| from typing import List | |
| import numpy as np | |
| import pysbd | |
| import torch | |
| from torch import nn | |
| from TTS.config import load_config | |
| from TTS.tts.configs.vits_config import VitsConfig | |
| from TTS.tts.models import setup_model as setup_tts_model | |
| from TTS.tts.models.vits import Vits | |
| # pylint: disable=unused-wildcard-import | |
| # pylint: disable=wildcard-import | |
| from TTS.tts.utils.synthesis import synthesis, transfer_voice, trim_silence | |
| from TTS.utils.audio import AudioProcessor | |
| from TTS.utils.audio.numpy_transforms import save_wav | |
| from TTS.vc.models import setup_model as setup_vc_model | |
| from TTS.vocoder.models import setup_model as setup_vocoder_model | |
| from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input | |
| class Synthesizer(nn.Module): | |
| def __init__( | |
| self, | |
| tts_checkpoint: str = "", | |
| tts_config_path: str = "", | |
| tts_speakers_file: str = "", | |
| tts_languages_file: str = "", | |
| vocoder_checkpoint: str = "", | |
| vocoder_config: str = "", | |
| encoder_checkpoint: str = "", | |
| encoder_config: str = "", | |
| vc_checkpoint: str = "", | |
| vc_config: str = "", | |
| model_dir: str = "", | |
| voice_dir: str = None, | |
| use_cuda: bool = False, | |
| ) -> None: | |
| """General 🐸 TTS interface for inference. It takes a tts and a vocoder | |
| model and synthesize speech from the provided text. | |
| The text is divided into a list of sentences using `pysbd` and synthesize | |
| speech on each sentence separately. | |
| If you have certain special characters in your text, you need to handle | |
| them before providing the text to Synthesizer. | |
| TODO: set the segmenter based on the source language | |
| Args: | |
| tts_checkpoint (str, optional): path to the tts model file. | |
| tts_config_path (str, optional): path to the tts config file. | |
| vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None. | |
| vocoder_config (str, optional): path to the vocoder config file. Defaults to None. | |
| encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`, | |
| encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`, | |
| vc_checkpoint (str, optional): path to the voice conversion model file. Defaults to `""`, | |
| vc_config (str, optional): path to the voice conversion config file. Defaults to `""`, | |
| use_cuda (bool, optional): enable/disable cuda. Defaults to False. | |
| """ | |
| super().__init__() | |
| self.tts_checkpoint = tts_checkpoint | |
| self.tts_config_path = tts_config_path | |
| self.tts_speakers_file = tts_speakers_file | |
| self.tts_languages_file = tts_languages_file | |
| self.vocoder_checkpoint = vocoder_checkpoint | |
| self.vocoder_config = vocoder_config | |
| self.encoder_checkpoint = encoder_checkpoint | |
| self.encoder_config = encoder_config | |
| self.vc_checkpoint = vc_checkpoint | |
| self.vc_config = vc_config | |
| self.use_cuda = use_cuda | |
| self.tts_model = None | |
| self.vocoder_model = None | |
| self.vc_model = None | |
| self.speaker_manager = None | |
| self.tts_speakers = {} | |
| self.language_manager = None | |
| self.num_languages = 0 | |
| self.tts_languages = {} | |
| self.d_vector_dim = 0 | |
| self.seg = self._get_segmenter("en") | |
| self.use_cuda = use_cuda | |
| self.voice_dir = voice_dir | |
| if self.use_cuda: | |
| assert torch.cuda.is_available(), "CUDA is not availabe on this machine." | |
| if tts_checkpoint: | |
| self._load_tts(tts_checkpoint, tts_config_path, use_cuda) | |
| self.output_sample_rate = self.tts_config.audio["sample_rate"] | |
| if vocoder_checkpoint: | |
| self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda) | |
| self.output_sample_rate = self.vocoder_config.audio["sample_rate"] | |
| if vc_checkpoint: | |
| self._load_vc(vc_checkpoint, vc_config, use_cuda) | |
| self.output_sample_rate = self.vc_config.audio["output_sample_rate"] | |
| if model_dir: | |
| if "fairseq" in model_dir: | |
| self._load_fairseq_from_dir(model_dir, use_cuda) | |
| self.output_sample_rate = self.tts_config.audio["sample_rate"] | |
| else: | |
| self._load_tts_from_dir(model_dir, use_cuda) | |
| self.output_sample_rate = self.tts_config.audio["output_sample_rate"] | |
| def _get_segmenter(lang: str): | |
| """get the sentence segmenter for the given language. | |
| Args: | |
| lang (str): target language code. | |
| Returns: | |
| [type]: [description] | |
| """ | |
| return pysbd.Segmenter(language=lang, clean=True) | |
| def _load_vc(self, vc_checkpoint: str, vc_config_path: str, use_cuda: bool) -> None: | |
| """Load the voice conversion model. | |
| 1. Load the model config. | |
| 2. Init the model from the config. | |
| 3. Load the model weights. | |
| 4. Move the model to the GPU if CUDA is enabled. | |
| Args: | |
| vc_checkpoint (str): path to the model checkpoint. | |
| tts_config_path (str): path to the model config file. | |
| use_cuda (bool): enable/disable CUDA use. | |
| """ | |
| # pylint: disable=global-statement | |
| self.vc_config = load_config(vc_config_path) | |
| self.vc_model = setup_vc_model(config=self.vc_config) | |
| self.vc_model.load_checkpoint(self.vc_config, vc_checkpoint) | |
| if use_cuda: | |
| self.vc_model.cuda() | |
| def _load_fairseq_from_dir(self, model_dir: str, use_cuda: bool) -> None: | |
| """Load the fairseq model from a directory. | |
| We assume it is VITS and the model knows how to load itself from the directory and there is a config.json file in the directory. | |
| """ | |
| self.tts_config = VitsConfig() | |
| self.tts_model = Vits.init_from_config(self.tts_config) | |
| self.tts_model.load_fairseq_checkpoint(self.tts_config, checkpoint_dir=model_dir, eval=True) | |
| self.tts_config = self.tts_model.config | |
| if use_cuda: | |
| self.tts_model.cuda() | |
| def _load_tts_from_dir(self, model_dir: str, use_cuda: bool) -> None: | |
| """Load the TTS model from a directory. | |
| We assume the model knows how to load itself from the directory and there is a config.json file in the directory. | |
| """ | |
| config = load_config(os.path.join(model_dir, "config.json")) | |
| self.tts_config = config | |
| self.tts_model = setup_tts_model(config) | |
| self.tts_model.load_checkpoint(config, checkpoint_dir=model_dir, eval=True) | |
| if use_cuda: | |
| self.tts_model.cuda() | |
| def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None: | |
| """Load the TTS model. | |
| 1. Load the model config. | |
| 2. Init the model from the config. | |
| 3. Load the model weights. | |
| 4. Move the model to the GPU if CUDA is enabled. | |
| 5. Init the speaker manager in the model. | |
| Args: | |
| tts_checkpoint (str): path to the model checkpoint. | |
| tts_config_path (str): path to the model config file. | |
| use_cuda (bool): enable/disable CUDA use. | |
| """ | |
| # pylint: disable=global-statement | |
| self.tts_config = load_config(tts_config_path) | |
| if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None: | |
| raise ValueError("Phonemizer is not defined in the TTS config.") | |
| self.tts_model = setup_tts_model(config=self.tts_config) | |
| if not self.encoder_checkpoint: | |
| self._set_speaker_encoder_paths_from_tts_config() | |
| self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True) | |
| if use_cuda: | |
| self.tts_model.cuda() | |
| if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager"): | |
| self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config, use_cuda) | |
| def _set_speaker_encoder_paths_from_tts_config(self): | |
| """Set the encoder paths from the tts model config for models with speaker encoders.""" | |
| if hasattr(self.tts_config, "model_args") and hasattr( | |
| self.tts_config.model_args, "speaker_encoder_config_path" | |
| ): | |
| self.encoder_checkpoint = self.tts_config.model_args.speaker_encoder_model_path | |
| self.encoder_config = self.tts_config.model_args.speaker_encoder_config_path | |
| def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None: | |
| """Load the vocoder model. | |
| 1. Load the vocoder config. | |
| 2. Init the AudioProcessor for the vocoder. | |
| 3. Init the vocoder model from the config. | |
| 4. Move the model to the GPU if CUDA is enabled. | |
| Args: | |
| model_file (str): path to the model checkpoint. | |
| model_config (str): path to the model config file. | |
| use_cuda (bool): enable/disable CUDA use. | |
| """ | |
| self.vocoder_config = load_config(model_config) | |
| self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config.audio) | |
| self.vocoder_model = setup_vocoder_model(self.vocoder_config) | |
| self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True) | |
| if use_cuda: | |
| self.vocoder_model.cuda() | |
| def split_into_sentences(self, text) -> List[str]: | |
| """Split give text into sentences. | |
| Args: | |
| text (str): input text in string format. | |
| Returns: | |
| List[str]: list of sentences. | |
| """ | |
| return self.seg.segment(text) | |
| def save_wav(self, wav: List[int], path: str, pipe_out=None) -> None: | |
| """Save the waveform as a file. | |
| Args: | |
| wav (List[int]): waveform as a list of values. | |
| path (str): output path to save the waveform. | |
| pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe. | |
| """ | |
| # if tensor convert to numpy | |
| if torch.is_tensor(wav): | |
| wav = wav.cpu().numpy() | |
| if isinstance(wav, list): | |
| wav = np.array(wav) | |
| save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate, pipe_out=pipe_out) | |
| def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]: | |
| output_wav = self.vc_model.voice_conversion(source_wav, target_wav) | |
| return output_wav | |
| def tts( | |
| self, | |
| text: str = "", | |
| speaker_name: str = "", | |
| language_name: str = "", | |
| speaker_wav=None, | |
| style_wav=None, | |
| style_text=None, | |
| reference_wav=None, | |
| reference_speaker_name=None, | |
| **kwargs, | |
| ) -> List[int]: | |
| """🐸 TTS magic. Run all the models and generate speech. | |
| Args: | |
| text (str): input text. | |
| speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "". | |
| language_name (str, optional): language id for multi-language models. Defaults to "". | |
| speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None. | |
| style_wav ([type], optional): style waveform for GST. Defaults to None. | |
| style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None. | |
| reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None. | |
| reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None. | |
| Returns: | |
| List[int]: [description] | |
| """ | |
| start_time = time.time() | |
| wavs = [] | |
| if not text and not reference_wav: | |
| raise ValueError( | |
| "You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API." | |
| ) | |
| if text: | |
| sens = self.split_into_sentences(text) | |
| print(" > Text splitted to sentences.") | |
| print(sens) | |
| # handle multi-speaker | |
| if "voice_dir" in kwargs: | |
| self.voice_dir = kwargs["voice_dir"] | |
| kwargs.pop("voice_dir") | |
| speaker_embedding = None | |
| speaker_id = None | |
| if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"): | |
| if speaker_name and isinstance(speaker_name, str): | |
| if self.tts_config.use_d_vector_file: | |
| # get the average speaker embedding from the saved d_vectors. | |
| speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding( | |
| speaker_name, num_samples=None, randomize=False | |
| ) | |
| speaker_embedding = np.array(speaker_embedding)[None, :] # [1 x embedding_dim] | |
| else: | |
| # get speaker idx from the speaker name | |
| speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name] | |
| # handle Neon models with single speaker. | |
| elif len(self.tts_model.speaker_manager.name_to_id) == 1: | |
| speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0] | |
| elif not speaker_name and not speaker_wav: | |
| raise ValueError( | |
| " [!] Looks like you are using a multi-speaker model. " | |
| "You need to define either a `speaker_idx` or a `speaker_wav` to use a multi-speaker model." | |
| ) | |
| else: | |
| speaker_embedding = None | |
| else: | |
| if speaker_name and self.voice_dir is None: | |
| raise ValueError( | |
| f" [!] Missing speakers.json file path for selecting speaker {speaker_name}." | |
| "Define path for speaker.json if it is a multi-speaker model or remove defined speaker idx. " | |
| ) | |
| # handle multi-lingual | |
| language_id = None | |
| if self.tts_languages_file or ( | |
| hasattr(self.tts_model, "language_manager") and self.tts_model.language_manager is not None | |
| ): | |
| if len(self.tts_model.language_manager.name_to_id) == 1: | |
| language_id = list(self.tts_model.language_manager.name_to_id.values())[0] | |
| elif language_name and isinstance(language_name, str): | |
| try: | |
| language_id = self.tts_model.language_manager.name_to_id[language_name] | |
| except KeyError as e: | |
| raise ValueError( | |
| f" [!] Looks like you use a multi-lingual model. " | |
| f"Language {language_name} is not in the available languages: " | |
| f"{self.tts_model.language_manager.name_to_id.keys()}." | |
| ) from e | |
| elif not language_name: | |
| raise ValueError( | |
| " [!] Look like you use a multi-lingual model. " | |
| "You need to define either a `language_name` or a `style_wav` to use a multi-lingual model." | |
| ) | |
| else: | |
| raise ValueError( | |
| f" [!] Missing language_ids.json file path for selecting language {language_name}." | |
| "Define path for language_ids.json if it is a multi-lingual model or remove defined language idx. " | |
| ) | |
| # compute a new d_vector from the given clip. | |
| if speaker_wav is not None and self.tts_model.speaker_manager is not None: | |
| speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(speaker_wav) | |
| vocoder_device = "cpu" | |
| use_gl = self.vocoder_model is None | |
| if not use_gl: | |
| vocoder_device = next(self.vocoder_model.parameters()).device | |
| if self.use_cuda: | |
| vocoder_device = "cuda" | |
| if not reference_wav: # not voice conversion | |
| for sen in sens: | |
| if hasattr(self.tts_model, "synthesize"): | |
| outputs = self.tts_model.synthesize( | |
| text=sen, | |
| config=self.tts_config, | |
| speaker_id=speaker_name, | |
| voice_dirs=self.voice_dir, | |
| d_vector=speaker_embedding, | |
| speaker_wav=speaker_wav, | |
| language=language_name, | |
| **kwargs, | |
| ) | |
| else: | |
| # synthesize voice | |
| outputs = synthesis( | |
| model=self.tts_model, | |
| text=sen, | |
| CONFIG=self.tts_config, | |
| use_cuda=self.use_cuda, | |
| speaker_id=speaker_id, | |
| style_wav=style_wav, | |
| style_text=style_text, | |
| use_griffin_lim=use_gl, | |
| d_vector=speaker_embedding, | |
| language_id=language_id, | |
| ) | |
| waveform = outputs["wav"] | |
| if not use_gl: | |
| mel_postnet_spec = outputs["outputs"]["model_outputs"][0].detach().cpu().numpy() | |
| # denormalize tts output based on tts audio config | |
| mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T | |
| # renormalize spectrogram based on vocoder config | |
| vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T) | |
| # compute scale factor for possible sample rate mismatch | |
| scale_factor = [ | |
| 1, | |
| self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate, | |
| ] | |
| if scale_factor[1] != 1: | |
| print(" > interpolating tts model output.") | |
| vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input) | |
| else: | |
| vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable | |
| # run vocoder model | |
| # [1, T, C] | |
| waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device)) | |
| if torch.is_tensor(waveform) and waveform.device != torch.device("cpu") and not use_gl: | |
| waveform = waveform.cpu() | |
| if not use_gl: | |
| waveform = waveform.numpy() | |
| waveform = waveform.squeeze() | |
| # trim silence | |
| if "do_trim_silence" in self.tts_config.audio and self.tts_config.audio["do_trim_silence"]: | |
| waveform = trim_silence(waveform, self.tts_model.ap) | |
| wavs += list(waveform) | |
| wavs += [0] * 10000 | |
| else: | |
| # get the speaker embedding or speaker id for the reference wav file | |
| reference_speaker_embedding = None | |
| reference_speaker_id = None | |
| if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"): | |
| if reference_speaker_name and isinstance(reference_speaker_name, str): | |
| if self.tts_config.use_d_vector_file: | |
| # get the speaker embedding from the saved d_vectors. | |
| reference_speaker_embedding = self.tts_model.speaker_manager.get_embeddings_by_name( | |
| reference_speaker_name | |
| )[0] | |
| reference_speaker_embedding = np.array(reference_speaker_embedding)[ | |
| None, : | |
| ] # [1 x embedding_dim] | |
| else: | |
| # get speaker idx from the speaker name | |
| reference_speaker_id = self.tts_model.speaker_manager.name_to_id[reference_speaker_name] | |
| else: | |
| reference_speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip( | |
| reference_wav | |
| ) | |
| outputs = transfer_voice( | |
| model=self.tts_model, | |
| CONFIG=self.tts_config, | |
| use_cuda=self.use_cuda, | |
| reference_wav=reference_wav, | |
| speaker_id=speaker_id, | |
| d_vector=speaker_embedding, | |
| use_griffin_lim=use_gl, | |
| reference_speaker_id=reference_speaker_id, | |
| reference_d_vector=reference_speaker_embedding, | |
| ) | |
| waveform = outputs | |
| if not use_gl: | |
| mel_postnet_spec = outputs[0].detach().cpu().numpy() | |
| # denormalize tts output based on tts audio config | |
| mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T | |
| # renormalize spectrogram based on vocoder config | |
| vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T) | |
| # compute scale factor for possible sample rate mismatch | |
| scale_factor = [ | |
| 1, | |
| self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate, | |
| ] | |
| if scale_factor[1] != 1: | |
| print(" > interpolating tts model output.") | |
| vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input) | |
| else: | |
| vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable | |
| # run vocoder model | |
| # [1, T, C] | |
| waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device)) | |
| if torch.is_tensor(waveform) and waveform.device != torch.device("cpu"): | |
| waveform = waveform.cpu() | |
| if not use_gl: | |
| waveform = waveform.numpy() | |
| wavs = waveform.squeeze() | |
| # compute stats | |
| process_time = time.time() - start_time | |
| audio_time = len(wavs) / self.tts_config.audio["sample_rate"] | |
| print(f" > Processing time: {process_time}") | |
| print(f" > Real-time factor: {process_time / audio_time}") | |
| return wavs | |