import argparse import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder import os def parse(csv_path): print(f"Location of the file: {csv_path}") # Step 1: Load the dataset # file_path = "dataset.csv" # Path to the original dataset data = pd.read_csv(csv_path) # Drop NA and duplicates data = data.dropna() data.to_csv('data/01 dropna.csv', index=False) data = data.drop_duplicates() data.to_csv('data/02 drop_duplicates.csv', index=False) # Step 2: Define the feature columns (X) and target column (y) # X = data[["name", "attendance percentage", "average sleep time", "average screen time"]] # Feature columns X = data[["DateTime","product","campaign_id","webpage_id","product_category_1","product_category_2","user_group_id","gender","age_level","user_depth","city_development_index","var_1"]] # Feature columns y = data["is_click"] # Target column # Extract datetime features X.loc[:,'DateTime'] = pd.to_datetime(X['DateTime'], errors='coerce') X = X.dropna(subset=['DateTime']) # print(X.columns) # print(X.iloc[:5,0]) # print(X.iloc[:5,0].dt.weekday) X.loc[:,'weekday'] = pd.to_numeric(pd.to_datetime(X['DateTime'], errors='coerce').dt.weekday, errors='coerce', downcast='integer') X.loc[:,'month'] = pd.to_numeric(pd.to_datetime(X['DateTime'], errors='coerce').dt.month, errors='coerce', downcast='integer') X.loc[:,"hour"] = pd.to_datetime(X['DateTime'], errors='coerce').dt.hour.values X = X.drop('DateTime', axis=1) # Product label to number le = LabelEncoder() X.loc[:,"product"] = le.fit_transform(X["product"]) # Gender label to number X['gender'] = X['gender'].map({'Female': 1, 'Male': 0, 'M': 0}) # Normalize numerical features scaler = MinMaxScaler() numerical_features = ['campaign_id','webpage_id','user_depth',"product_category_1","product_category_2","user_group_id", 'age_level',"user_depth", 'city_development_index', 'var_1'] X[numerical_features] = scaler.fit_transform(X[numerical_features]) data = pd.concat([X, y.to_frame(name="is_click")], axis=1) data.to_csv('data/03 normalize.csv', index=False) # Step 3: Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Step 4: Combine X and y back into dataframes for train and test train_data = pd.concat([X_train, y_train], axis=1) # Combine features and target for training data test_data = pd.concat([X_test, y_test], axis=1) # Combine features and target for testing data # Step 5: Create the 'data' folder if it doesn't exist output_folder = "data" os.makedirs(output_folder, exist_ok=True) # Step 6: Save the train and test sets as CSV files # train_file_path = os.path.join(output_folder, "train.csv") train_file_path = "data/train.csv" test_file_path = "data/test.csv" train_data.to_csv(train_file_path, index=False) test_data.to_csv(test_file_path, index=False) print(f"Train and test datasets saved in '{output_folder}' folder.") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--csv-path", type=str) args = parser.parse_args() parse(args.csv_path)