Spaces:
Sleeping
Sleeping
| import joblib | |
| from catboost import CatBoostClassifier | |
| from xgboost import XGBClassifier | |
| from config import CATBOOST_MODEL_PATH, XGB_MODEL_PATH, RF_MODEL_PATH | |
| def save_models(models): | |
| """ Save trained models """ | |
| models["CatBoost"].save_model(CATBOOST_MODEL_PATH) | |
| if models["XGBoost"] is not None: | |
| # Save XGBoost model in binary format to reduce memory usage | |
| models["XGBoost"].get_booster().save_model(XGB_MODEL_PATH) | |
| joblib.dump(models["RandomForest"], RF_MODEL_PATH) | |
| print("✅ Models saved successfully!") | |
| def load_models(): | |
| """ Load trained models """ | |
| catboost = CatBoostClassifier() | |
| catboost.load_model(CATBOOST_MODEL_PATH) | |
| xgb = XGBClassifier() # Load XGBoost model in binary format | |
| xgb.load_model(XGB_MODEL_PATH) | |
| rf = joblib.load(RF_MODEL_PATH) | |
| return {"CatBoost": catboost, "XGBoost": xgb, "RandomForest": rf} |