Update idea.txt
Browse files
idea.txt
CHANGED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
print("start1")
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import subprocess
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from PyPDF2 import PdfReader
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from langchain.chains import LLMChain
|
| 11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 12 |
+
from langchain.schema import Document
|
| 13 |
+
print("start2")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Check if already installed to avoid reinstalling
|
| 17 |
+
try:
|
| 18 |
+
import llama_cpp
|
| 19 |
+
print("llama_cpp already installed.")
|
| 20 |
+
except ImportError:
|
| 21 |
+
print("Installing llama_cpp from wheel...")
|
| 22 |
+
subprocess.check_call([
|
| 23 |
+
sys.executable, "-m", "pip", "install",
|
| 24 |
+
"llama-cpp-python", "--no-binary", ":all:", "--force-reinstall"
|
| 25 |
+
])
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
from llama_cpp import Llama
|
| 29 |
+
print("start3")
|
| 30 |
+
import warnings
|
| 31 |
+
warnings.filterwarnings("ignore")
|
| 32 |
+
|
| 33 |
+
print("Start")
|
| 34 |
+
import subprocess
|
| 35 |
+
|
| 36 |
+
subprocess.run([
|
| 37 |
+
"huggingface-cli", "download",
|
| 38 |
+
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
| 39 |
+
"mistral-7b-instruct-v0.1.Q2_K.gguf",
|
| 40 |
+
"--local-dir", "./models",
|
| 41 |
+
"--local-dir-use-symlinks", "False"
|
| 42 |
+
], check=True)
|
| 43 |
+
|
| 44 |
+
# ------------------------------
|
| 45 |
+
# Device and Embedding Setup (CPU optimized)
|
| 46 |
+
# ------------------------------
|
| 47 |
+
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
| 48 |
+
model_kwargs = {"device": "cpu"} # Force CPU usage
|
| 49 |
+
encode_kwargs = {"normalize_embedding": False}
|
| 50 |
+
|
| 51 |
+
embeddings = HuggingFaceEmbeddings(
|
| 52 |
+
model_name=modelPath,
|
| 53 |
+
model_kwargs=model_kwargs,
|
| 54 |
+
encode_kwargs=encode_kwargs
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# ------------------------------
|
| 58 |
+
# Load Mistral GGUF via llama.cpp (CPU optimized)
|
| 59 |
+
# ------------------------------
|
| 60 |
+
llm_cpp = Llama(
|
| 61 |
+
model_path="./models/mistral-7b-instruct-v0.1.Q2_K.gguf",
|
| 62 |
+
n_ctx=2048,
|
| 63 |
+
n_threads=4, # Adjust based on your CPU cores
|
| 64 |
+
n_gpu_layers=0, # Force CPU-only
|
| 65 |
+
temperature=0.7,
|
| 66 |
+
top_p=0.9,
|
| 67 |
+
repeat_penalty=1.1
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# ------------------------------
|
| 71 |
+
# LangChain-compatible wrapper
|
| 72 |
+
# ------------------------------
|
| 73 |
+
def mistral_llm(prompt):
|
| 74 |
+
output = llm_cpp(
|
| 75 |
+
prompt,
|
| 76 |
+
max_tokens=512, # Reduced for CPU performance
|
| 77 |
+
stop=["</s>", "[INST]", "[/INST]"]
|
| 78 |
+
)
|
| 79 |
+
return output["choices"][0]["text"].strip()
|
| 80 |
+
|
| 81 |
+
# ------------------------------
|
| 82 |
+
# Prompt Template (unchanged)
|
| 83 |
+
# ------------------------------
|
| 84 |
+
def get_qa_prompt():
|
| 85 |
+
template = """<s>[INST] \
|
| 86 |
+
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
| 87 |
+
|
| 88 |
+
Guidelines:
|
| 89 |
+
- Respond in a natural, conversational tone
|
| 90 |
+
- Be detailed but concise
|
| 91 |
+
- Use paragraphs and bullet points when appropriate
|
| 92 |
+
- If you don't know, say so
|
| 93 |
+
- Maintain a friendly and professional demeanor
|
| 94 |
+
|
| 95 |
+
Conversation History:
|
| 96 |
+
{chat_history}
|
| 97 |
+
|
| 98 |
+
Relevant Context:
|
| 99 |
+
{context}
|
| 100 |
+
|
| 101 |
+
Current Question: {question}
|
| 102 |
+
|
| 103 |
+
Provide a helpful response: [/INST]"""
|
| 104 |
+
return PromptTemplate(
|
| 105 |
+
template=template,
|
| 106 |
+
input_variables=["context", "question", "chat_history"]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# ------------------------------
|
| 110 |
+
# PDF and Chat Logic (optimized for CPU)
|
| 111 |
+
# ------------------------------
|
| 112 |
+
def pdf_text(pdf_docs):
|
| 113 |
+
text = ""
|
| 114 |
+
for doc in pdf_docs:
|
| 115 |
+
reader = PdfReader(doc)
|
| 116 |
+
for page in reader.pages:
|
| 117 |
+
page_text = page.extract_text()
|
| 118 |
+
if page_text:
|
| 119 |
+
text += page_text + "\n"
|
| 120 |
+
return text
|
| 121 |
+
|
| 122 |
+
def get_chunks(text):
|
| 123 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 124 |
+
chunk_size=800, # Smaller chunks for CPU
|
| 125 |
+
chunk_overlap=100,
|
| 126 |
+
length_function=len
|
| 127 |
+
)
|
| 128 |
+
chunks = splitter.split_text(text)
|
| 129 |
+
return [Document(page_content=chunk) for chunk in chunks]
|
| 130 |
+
|
| 131 |
+
def get_vectorstore(documents):
|
| 132 |
+
db = FAISS.from_documents(documents, embedding=embeddings)
|
| 133 |
+
db.save_local("faiss_index")
|
| 134 |
+
|
| 135 |
+
def format_chat_history(history):
|
| 136 |
+
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in history[-2:]]) # Shorter history
|
| 137 |
+
|
| 138 |
+
def handle_pdf_upload(pdf_files):
|
| 139 |
+
if not pdf_files:
|
| 140 |
+
return "⚠️ Upload at least one PDF"
|
| 141 |
+
try:
|
| 142 |
+
text = pdf_text(pdf_files)
|
| 143 |
+
if not text.strip():
|
| 144 |
+
return "⚠️ Could not extract text"
|
| 145 |
+
chunks = get_chunks(text)
|
| 146 |
+
get_vectorstore(chunks)
|
| 147 |
+
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)} chunks"
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return f"❌ Error: {str(e)}"
|
| 150 |
+
|
| 151 |
+
def user_query(msg, chat_history):
|
| 152 |
+
if not os.path.exists("faiss_index"):
|
| 153 |
+
chat_history.append((msg, "Please upload PDF documents first."))
|
| 154 |
+
return "", chat_history
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
| 158 |
+
retriever = db.as_retriever(search_kwargs={"k": 2}) # Fewer documents for CPU
|
| 159 |
+
docs = retriever.get_relevant_documents(msg)
|
| 160 |
+
context = "\n\n".join([d.page_content for d in docs][:2]) # Limit context
|
| 161 |
+
|
| 162 |
+
prompt = get_qa_prompt()
|
| 163 |
+
final_prompt = prompt.format(
|
| 164 |
+
context=context[:1500], # Further limit context size
|
| 165 |
+
question=msg,
|
| 166 |
+
chat_history=format_chat_history(chat_history)
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
response = mistral_llm(final_prompt)
|
| 170 |
+
chat_history.append((msg, response))
|
| 171 |
+
return "", chat_history
|
| 172 |
+
except Exception as e:
|
| 173 |
+
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
| 174 |
+
chat_history.append((msg, error_msg))
|
| 175 |
+
return "", chat_history
|
| 176 |
+
|
| 177 |
+
# ------------------------------
|
| 178 |
+
# Gradio Interface (your exact requested format)
|
| 179 |
+
# ------------------------------
|
| 180 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
| 181 |
+
with gr.Row():
|
| 182 |
+
gr.Markdown("""
|
| 183 |
+
# 📚 PDF Chat Assistant
|
| 184 |
+
### Have natural conversations with your documents ((Note: This Space runs on CPU, so responses may take a few mins.))
|
| 185 |
+
""")
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column(scale=1, min_width=300):
|
| 188 |
+
gr.Markdown("### Document Upload")
|
| 189 |
+
pdf_input = gr.File(
|
| 190 |
+
file_types=[".pdf"],
|
| 191 |
+
file_count="multiple",
|
| 192 |
+
label="Upload PDFs",
|
| 193 |
+
height=100
|
| 194 |
+
)
|
| 195 |
+
upload_btn = gr.Button("Process Documents", variant="primary")
|
| 196 |
+
status_box = gr.Textbox(label="Status", interactive=False)
|
| 197 |
+
gr.Markdown("""
|
| 198 |
+
**Instructions:**
|
| 199 |
+
1. Upload PDF documents
|
| 200 |
+
2. Click Process Documents
|
| 201 |
+
3. Start chatting in the right panel
|
| 202 |
+
""")
|
| 203 |
+
|
| 204 |
+
with gr.Column(scale=2):
|
| 205 |
+
chatbot = gr.Chatbot(
|
| 206 |
+
height=600,
|
| 207 |
+
bubble_full_width=False,
|
| 208 |
+
avatar_images=(
|
| 209 |
+
"user.png",
|
| 210 |
+
"bot.png"
|
| 211 |
+
)
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
message = gr.Textbox(
|
| 216 |
+
placeholder="Type your question about the documents...",
|
| 217 |
+
show_label=False,
|
| 218 |
+
container=False,
|
| 219 |
+
scale=7,
|
| 220 |
+
autofocus=True
|
| 221 |
+
)
|
| 222 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
clear_chat = gr.Button("🧹 Clear Conversation")
|
| 226 |
+
examples = gr.Examples(
|
| 227 |
+
examples=[
|
| 228 |
+
"Summarize the key points from the documents",
|
| 229 |
+
"What are the main findings?",
|
| 230 |
+
"Explain this in simpler terms"
|
| 231 |
+
],
|
| 232 |
+
inputs=message,
|
| 233 |
+
label="Example Questions"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
upload_btn.click(handle_pdf_upload, inputs=pdf_input, outputs=status_box)
|
| 237 |
+
submit_btn.click(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
| 238 |
+
message.submit(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
| 239 |
+
clear_chat.click(lambda: [], None, chatbot, queue=False)
|
| 240 |
+
|
| 241 |
+
if __name__ == "__main__":
|
| 242 |
+
demo.launch() # Disable sharing for local CPU use
|