Puffin / src /models /stable_diffusion3 /transformer_sd3_dynamic.py
KangLiao's picture
init
ace9173
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple, Union
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils.rnn import pad_sequence
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin
from diffusers.models.attention import FeedForward, JointTransformerBlock, _chunked_feed_forward
from diffusers.models.attention_processor import (
Attention,
AttentionProcessor,
FusedJointAttnProcessor2_0,
JointAttnProcessor2_0,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CustomJointAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("JointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
batch_size = hidden_states.shape[0]
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# `context` projections.
if encoder_hidden_states is not None:
ctx_len = encoder_hidden_states.shape[1]
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)
if attention_mask is not None:
# import pdb; pdb.set_trace()
encoder_attention_mask = torch.ones(
batch_size, ctx_len, dtype=torch.bool, device=hidden_states.device)
attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=1)
# import pdb; pdb.set_trace()
if attention_mask is not None:
attention_mask = attention_mask[:, None] * attention_mask[..., None] # bsz, seqlen, seqlen
indices = range(attention_mask.shape[1])
attention_mask[:, indices, indices] = True
attention_mask = attention_mask[:, None]
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False,
attn_mask=attention_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# import pdb; pdb.set_trace()
# Split the attention outputs.
hidden_states, encoder_hidden_states = (
hidden_states[:, : residual.shape[1]],
hidden_states[:, residual.shape[1] :],
)
if not attn.context_pre_only:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else:
return hidden_states
class CustomJointTransformerBlock(JointTransformerBlock):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.attn.set_processor(CustomJointAttnProcessor2_0())
if self.attn2 is not None:
self.attn2.set_processor(CustomJointAttnProcessor2_0())
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
attention_mask: Optional[torch.BoolTensor] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
):
joint_attention_kwargs = joint_attention_kwargs or {}
if self.use_dual_attention:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
hidden_states, emb=temb
)
else:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=norm_encoder_hidden_states,
**joint_attention_kwargs,
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
if self.use_dual_attention:
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, attention_mask=attention_mask,
**joint_attention_kwargs)
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
hidden_states = hidden_states + attn_output2
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states
@maybe_allow_in_graph
class SD3SingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
):
super().__init__()
self.norm1 = AdaLayerNormZero(dim)
self.attn = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=JointAttnProcessor2_0(),
eps=1e-6,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor):
# 1. Attention
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
attn_output = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=None)
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
# 2. Feed Forward
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
return hidden_states
class SD3Transformer2DModel(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin
):
"""
The Transformer model introduced in [Stable Diffusion 3](https://huggingface.co/papers/2403.03206).
Parameters:
sample_size (`int`, defaults to `128`):
The width/height of the latents. This is fixed during training since it is used to learn a number of
position embeddings.
patch_size (`int`, defaults to `2`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `16`):
The number of latent channels in the input.
num_layers (`int`, defaults to `18`):
The number of layers of transformer blocks to use.
attention_head_dim (`int`, defaults to `64`):
The number of channels in each head.
num_attention_heads (`int`, defaults to `18`):
The number of heads to use for multi-head attention.
joint_attention_dim (`int`, defaults to `4096`):
The embedding dimension to use for joint text-image attention.
caption_projection_dim (`int`, defaults to `1152`):
The embedding dimension of caption embeddings.
pooled_projection_dim (`int`, defaults to `2048`):
The embedding dimension of pooled text projections.
out_channels (`int`, defaults to `16`):
The number of latent channels in the output.
pos_embed_max_size (`int`, defaults to `96`):
The maximum latent height/width of positional embeddings.
dual_attention_layers (`Tuple[int, ...]`, defaults to `()`):
The number of dual-stream transformer blocks to use.
qk_norm (`str`, *optional*, defaults to `None`):
The normalization to use for query and key in the attention layer. If `None`, no normalization is used.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["JointTransformerBlock", "CustomJointTransformerBlock"]
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 18,
attention_head_dim: int = 64,
num_attention_heads: int = 18,
joint_attention_dim: int = 4096,
caption_projection_dim: int = 1152,
pooled_projection_dim: int = 2048,
out_channels: int = 16,
pos_embed_max_size: int = 96,
dual_attention_layers: Tuple[
int, ...
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
qk_norm: Optional[str] = None,
):
super().__init__()
self.out_channels = out_channels if out_channels is not None else in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
)
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
self.transformer_blocks = nn.ModuleList(
[
CustomJointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
context_pre_only=i == num_layers - 1,
qk_norm=qk_norm,
use_dual_attention=True if i in dual_attention_layers else False,
)
for i in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
def disable_forward_chunking(self):
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, None, 0)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedJointAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
cond_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
block_controlnet_hidden_states: List = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
skip_layers: Optional[List[int]] = None,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`SD3Transformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`):
Embeddings projected from the embeddings of input conditions.
timestep (`torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
skip_layers (`list` of `int`, *optional*):
A list of layer indices to skip during the forward pass.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
latent_sizes = [hs.shape[-2:] for hs in hidden_states]
bsz = len(hidden_states)
hidden_states_list = []
for idx in range(bsz):
hidden_states_per_sample = self.pos_embed(hidden_states[idx][None])[0]
if cond_hidden_states is not None:
for ref in cond_hidden_states[idx]:
hidden_states_per_sample = torch.cat(
[hidden_states_per_sample, self.pos_embed(ref[None])[0]])
hidden_states_list.append(hidden_states_per_sample)
max_len = max([len(hs) for hs in hidden_states_list])
attention_mask = torch.zeros(bsz, max_len, dtype=torch.bool, device=self.device)
for i, hs in enumerate(hidden_states_list):
attention_mask[i, :len(hs)] = True # right padding
# import pdb; pdb.set_trace()
hidden_states = pad_sequence(hidden_states_list, batch_first=True, padding_value=0.0, padding_side='right')
temb = self.time_text_embed(timestep, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep)
joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb)
for index_block, block in enumerate(self.transformer_blocks):
# Skip specified layers
is_skip = True if skip_layers is not None and index_block in skip_layers else False
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
joint_attention_kwargs,
)
elif not is_skip:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
attention_mask=attention_mask,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
patch_size = self.config.patch_size
latent_sizes = [(latent_size[0] // patch_size, latent_size[1] // patch_size)
for latent_size in latent_sizes]
# import pdb; pdb.set_trace()
# unpatchify
output = [rearrange(hs[:math.prod(latent_size)], '(h w) (p q c) -> c (h p) (w q)',
h=latent_size[0], w=latent_size[1], p=patch_size, q=patch_size)
for hs, latent_size in zip(hidden_states, latent_sizes)]
try:
output = torch.stack(output) # can be staked if all have the save shape
except:
# cannot be stacked
pass
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)