init
Browse files- .gitattributes +1 -0
- app.py +34 -11
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
import spaces # Import spaces for ZeroGPU compatibility
|
|
@@ -47,6 +48,26 @@ checkpoint_path = "checkpoints/Puffin-Base.pth"
|
|
| 47 |
checkpoint = torch.load(checkpoint_path)
|
| 48 |
info = model.load_state_dict(checkpoint, strict=False)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
@torch.inference_mode()
|
| 52 |
@spaces.GPU(duration=120)
|
|
@@ -88,23 +109,23 @@ def camera_understanding(image_src, question, seed, progress=gr.Progress(track_t
|
|
| 88 |
single_batch["latitude_field"] = cam[2:].unsqueeze(0)
|
| 89 |
|
| 90 |
figs = make_perspective_figures(single_batch, single_batch, n_pairs=1)
|
| 91 |
-
|
| 92 |
for k, fig in figs.items():
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
| 96 |
plt.close(fig)
|
| 97 |
-
merged_imgs = np.concatenate(imgs, axis=1)
|
| 98 |
|
| 99 |
-
return text,
|
| 100 |
|
| 101 |
|
| 102 |
@torch.inference_mode()
|
| 103 |
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
| 104 |
def generate_image(prompt_scene,
|
| 105 |
seed=42,
|
| 106 |
-
roll=
|
| 107 |
-
pitch=1
|
| 108 |
fov=1.0,
|
| 109 |
progress=gr.Progress(track_tqdm=True)):
|
| 110 |
# Clear CUDA cache and avoid tracking gradients
|
|
@@ -126,6 +147,7 @@ def generate_image(prompt_scene,
|
|
| 126 |
cam_map = cam_map / (math.pi / 2)
|
| 127 |
|
| 128 |
prompt = prompt_scene + " " + prompt_camera
|
|
|
|
| 129 |
|
| 130 |
bsz = 4
|
| 131 |
with torch.no_grad():
|
|
@@ -167,7 +189,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 167 |
roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
|
| 168 |
pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
|
| 169 |
fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
|
| 170 |
-
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=
|
| 171 |
|
| 172 |
generation_button = gr.Button("Generate Images")
|
| 173 |
|
|
@@ -192,7 +214,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 192 |
understanding_button = gr.Button("Chat")
|
| 193 |
understanding_output = gr.Textbox(label="Response")
|
| 194 |
|
| 195 |
-
|
|
|
|
| 196 |
|
| 197 |
with gr.Accordion("Advanced options", open=False):
|
| 198 |
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
|
@@ -215,7 +238,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 215 |
understanding_button.click(
|
| 216 |
camera_understanding,
|
| 217 |
inputs=[image_input, und_seed_input],
|
| 218 |
-
outputs=[understanding_output,
|
| 219 |
)
|
| 220 |
|
| 221 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import io
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import spaces # Import spaces for ZeroGPU compatibility
|
|
|
|
| 48 |
checkpoint = torch.load(checkpoint_path)
|
| 49 |
info = model.load_state_dict(checkpoint, strict=False)
|
| 50 |
|
| 51 |
+
def fig_to_image(fig):
|
| 52 |
+
buf = io.BytesIO()
|
| 53 |
+
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
| 54 |
+
buf.seek(0)
|
| 55 |
+
img = Image.open(buf).convert('RGB')
|
| 56 |
+
buf.close()
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
def extract_up_lat_figs(fig_dict):
|
| 60 |
+
fig_up, fig_lat = None, None
|
| 61 |
+
others = {}
|
| 62 |
+
for k, fig in fig_dict.items():
|
| 63 |
+
if ("up_field" in k) and (fig_up is None):
|
| 64 |
+
fig_up = fig
|
| 65 |
+
elif ("latitude_field" in k) and (fig_lat is None):
|
| 66 |
+
fig_lat = fig
|
| 67 |
+
else:
|
| 68 |
+
others[k] = fig
|
| 69 |
+
return fig_up, fig_lat, others
|
| 70 |
+
|
| 71 |
|
| 72 |
@torch.inference_mode()
|
| 73 |
@spaces.GPU(duration=120)
|
|
|
|
| 109 |
single_batch["latitude_field"] = cam[2:].unsqueeze(0)
|
| 110 |
|
| 111 |
figs = make_perspective_figures(single_batch, single_batch, n_pairs=1)
|
| 112 |
+
up_img = lat_img = None
|
| 113 |
for k, fig in figs.items():
|
| 114 |
+
if "up_field" in k:
|
| 115 |
+
up_img = fig_to_image(fig)
|
| 116 |
+
elif "latitude_field" in k:
|
| 117 |
+
lat_img = fig_to_image(fig)
|
| 118 |
plt.close(fig)
|
|
|
|
| 119 |
|
| 120 |
+
return text, up_img, lat_img
|
| 121 |
|
| 122 |
|
| 123 |
@torch.inference_mode()
|
| 124 |
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
| 125 |
def generate_image(prompt_scene,
|
| 126 |
seed=42,
|
| 127 |
+
roll=0.1,
|
| 128 |
+
pitch=0.1,
|
| 129 |
fov=1.0,
|
| 130 |
progress=gr.Progress(track_tqdm=True)):
|
| 131 |
# Clear CUDA cache and avoid tracking gradients
|
|
|
|
| 147 |
cam_map = cam_map / (math.pi / 2)
|
| 148 |
|
| 149 |
prompt = prompt_scene + " " + prompt_camera
|
| 150 |
+
print("prompt:", prompt)
|
| 151 |
|
| 152 |
bsz = 4
|
| 153 |
with torch.no_grad():
|
|
|
|
| 189 |
roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
|
| 190 |
pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
|
| 191 |
fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
|
| 192 |
+
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=42)
|
| 193 |
|
| 194 |
generation_button = gr.Button("Generate Images")
|
| 195 |
|
|
|
|
| 214 |
understanding_button = gr.Button("Chat")
|
| 215 |
understanding_output = gr.Textbox(label="Response")
|
| 216 |
|
| 217 |
+
camera1 = gr.Gallery(label="Camera Maps", columns=1, rows=1)
|
| 218 |
+
camera2 = gr.Gallery(label="Camera Maps", columns=1, rows=1)
|
| 219 |
|
| 220 |
with gr.Accordion("Advanced options", open=False):
|
| 221 |
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
|
|
|
| 238 |
understanding_button.click(
|
| 239 |
camera_understanding,
|
| 240 |
inputs=[image_input, und_seed_input],
|
| 241 |
+
outputs=[understanding_output, camera1, camera2]
|
| 242 |
)
|
| 243 |
|
| 244 |
demo.launch(share=True)
|