"""Convenience classes a for camera models. Based on PyTorch tensors: differentiable, batched, with GPU support. Adapted from https://github.com/cvg/GeoCalib """ from abc import abstractmethod from typing import Dict, Optional, Tuple, Union import torch from torch.func import jacfwd, vmap from torch.nn import functional as F from scripts.camera.geometry.gravity import Gravity from scripts.camera.utils.conversions import deg2rad, focal2fov, fov2focal, rad2rotmat from scripts.camera.utils.tensor import TensorWrapper, autocast # mypy: ignore-errors class BaseCamera(TensorWrapper): """Camera tensor class.""" eps = 1e-3 @autocast def __init__(self, data: torch.Tensor): """Camera parameters with shape (..., {w, h, fx, fy, cx, cy, *dist}). Tensor convention: (..., {w, h, fx, fy, cx, cy, pitch, roll, *dist}) where - w, h: image size in pixels - fx, fy: focal lengths in pixels - cx, cy: principal points in normalized image coordinates - dist: distortion parameters Args: data (torch.Tensor): Camera parameters with shape (..., {6, 7, 8}). """ # w, h, fx, fy, cx, cy, dist assert data.shape[-1] in {6, 7, 8}, data.shape pad = data.new_zeros(data.shape[:-1] + (8 - data.shape[-1],)) data = torch.cat([data, pad], -1) if data.shape[-1] != 8 else data super().__init__(data) @classmethod def from_dict(cls, param_dict: Dict[str, torch.Tensor]) -> "BaseCamera": """Create a Camera object from a dictionary of parameters. Args: param_dict (Dict[str, torch.Tensor]): Dictionary of parameters. Returns: Camera: Camera object. """ for key, value in param_dict.items(): if not isinstance(value, torch.Tensor): param_dict[key] = torch.tensor(value) h, w = param_dict["height"], param_dict["width"] cx, cy = param_dict.get("cx", w / 2), param_dict.get("cy", h / 2) vfov = param_dict.get("vfov") f = param_dict.get("f", fov2focal(vfov, h)) if "dist" in param_dict: k1, k2 = param_dict["dist"][..., 0], param_dict["dist"][..., 1] elif "k1_hat" in param_dict: k1 = param_dict["k1_hat"] * (f / h) ** 2 k2 = param_dict.get("k2", torch.zeros_like(k1)) else: k1 = param_dict.get("k1", torch.zeros_like(f)) k2 = param_dict.get("k2", torch.zeros_like(f)) fx, fy = f, f if "scales" in param_dict: scales = param_dict["scales"] fx = fx * scales[..., 0] / scales[..., 1] params = torch.stack([w, h, fx, fy, cx, cy, k1, k2], dim=-1) return cls(params) def pinhole(self): """Return the pinhole camera model.""" return self.__class__(self._data[..., :6]) @property def size(self) -> torch.Tensor: """Size (width height) of the images, with shape (..., 2).""" return self._data[..., :2] @property def f(self) -> torch.Tensor: """Focal lengths (fx, fy) with shape (..., 2).""" return self._data[..., 2:4] @property def vfov(self) -> torch.Tensor: """Vertical field of view in radians.""" return focal2fov(self.f[..., 1], self.size[..., 1]) @property def hfov(self) -> torch.Tensor: """Horizontal field of view in radians.""" return focal2fov(self.f[..., 0], self.size[..., 0]) @property def c(self) -> torch.Tensor: """Principal points (cx, cy) with shape (..., 2).""" return self._data[..., 4:6] @property def K(self) -> torch.Tensor: """Returns the self intrinsic matrix with shape (..., 3, 3).""" shape = self.shape + (3, 3) K = self._data.new_zeros(shape) K[..., 0, 0] = self.f[..., 0] K[..., 1, 1] = self.f[..., 1] K[..., 0, 2] = self.c[..., 0] K[..., 1, 2] = self.c[..., 1] K[..., 2, 2] = 1 return K def update_focal(self, delta: torch.Tensor, as_log: bool = False): """Update the self parameters after changing the focal length.""" f = torch.exp(torch.log(self.f) + delta) if as_log else self.f + delta # clamp focal length to a reasonable range for stability during training min_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(150), self.size[..., 1]) max_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(5), self.size[..., 1]) min_f = min_f.unsqueeze(-1).expand(-1, 2) max_f = max_f.unsqueeze(-1).expand(-1, 2) f = f.clamp(min=min_f, max=max_f) # make sure focal ration stays the same (avoid inplace operations) fx = f[..., 1] * self.f[..., 0] / self.f[..., 1] f = torch.stack([fx, f[..., 1]], -1) dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape) return self.__class__(torch.cat([self.size, f, self.c, dist], -1)) def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]): """Update the self parameters after resizing an image.""" scales = (scales, scales) if isinstance(scales, (int, float)) else scales s = scales if isinstance(scales, torch.Tensor) else self.new_tensor(scales) dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape) return self.__class__(torch.cat([self.size * s, self.f * s, self.c * s, dist], -1)) def crop(self, pad: Tuple[float]): """Update the self parameters after cropping an image.""" pad = pad if isinstance(pad, torch.Tensor) else self.new_tensor(pad) size = self.size + pad.to(self.size) c = self.c + pad.to(self.c) / 2 dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape) return self.__class__(torch.cat([size, self.f, c, dist], -1)) def undo_scale_crop(self, data: Dict[str, torch.Tensor]): """Undo transforms done during scaling and cropping.""" camera = self.crop(-data["crop_pad"]) if "crop_pad" in data else self return camera.scale(1.0 / data["scales"]) @autocast def in_image(self, p2d: torch.Tensor): """Check if 2D points are within the image boundaries.""" assert p2d.shape[-1] == 2 size = self.size.unsqueeze(-2) return torch.all((p2d >= 0) & (p2d <= (size - 1)), -1) @autocast def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: """Project 3D points into the self plane and check for visibility.""" z = p3d[..., -1] valid = z > self.eps z = z.clamp(min=self.eps) p2d = p3d[..., :-1] / z.unsqueeze(-1) return p2d, valid def J_project(self, p3d: torch.Tensor): """Jacobian of the projection function.""" x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2] zero = torch.zeros_like(z) z = z.clamp(min=self.eps) J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1) J = J.reshape(p3d.shape[:-1] + (2, 3)) return J # N x 2 x 3 @abstractmethod def distort(self, pts: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]: """Distort normalized 2D coordinates and check for validity of the distortion model.""" raise NotImplementedError("distort() must be implemented.") def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor: """Jacobian of the distortion function.""" if wrt == "scale2pts": # (..., 2) J = [ vmap(jacfwd(lambda x: self[idx].distort(x, return_scale=True)[0]))(p2d[idx])[None] for idx in range(p2d.shape[0]) ] return torch.cat(J, dim=0).squeeze(-3, -2) elif wrt == "scale2dist": # (..., 1) J = [] for idx in range(p2d.shape[0]): # loop to batch pts dimension def func(x): params = torch.cat([self._data[idx, :6], x[None]], -1) return self.__class__(params).distort(p2d[idx], return_scale=True)[0] J.append(vmap(jacfwd(func))(self[idx].dist)) return torch.cat(J, dim=0) else: raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}") @abstractmethod def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]: """Undistort normalized 2D coordinates and check for validity of the distortion model.""" raise NotImplementedError("undistort() must be implemented.") def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor: """Jacobian of the undistortion function.""" if wrt == "pts": # (..., 2, 2) J = [ vmap(jacfwd(lambda x: self[idx].undistort(x)[0]))(p2d[idx])[None] for idx in range(p2d.shape[0]) ] return torch.cat(J, dim=0).squeeze(-3) elif wrt == "dist": # (..., 1) J = [] for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension def func(x): params = torch.cat([self._data[batch_idx, :6], x[None]], -1) return self.__class__(params).undistort(p2d[batch_idx])[0] J.append(vmap(jacfwd(func))(self[batch_idx].dist)) return torch.cat(J, dim=0) else: raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}") @autocast def up_projection_offset(self, p2d: torch.Tensor) -> torch.Tensor: """Compute the offset for the up-projection.""" return self.J_distort(p2d, wrt="scale2pts") # (B, N, 2) def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor: """Jacobian of the distortion offset for up-projection.""" if wrt == "uv": # (B, N, 2, 2) J = [ vmap(jacfwd(lambda x: self[idx].up_projection_offset(x)[0, 0]))(p2d[idx])[None] for idx in range(p2d.shape[0]) ] return torch.cat(J, dim=0) elif wrt == "dist": # (B, N, 2) J = [] for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension def func(x): params = torch.cat([self._data[batch_idx, :6], x[None]], -1)[None] return self.__class__(params).up_projection_offset(p2d[batch_idx][None]) J.append(vmap(jacfwd(func))(self[batch_idx].dist)) return torch.cat(J, dim=0).squeeze(1) else: raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}") @autocast def denormalize(self, p2d: torch.Tensor) -> torch.Tensor: """Convert normalized 2D coordinates into pixel coordinates.""" return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2) def J_denormalize(self): """Jacobian of the denormalization function.""" return torch.diag_embed(self.f) # ..., 2 x 2 @autocast def normalize(self, p2d: torch.Tensor) -> torch.Tensor: """Convert pixel coordinates into normalized 2D coordinates.""" return (p2d - self.c.unsqueeze(-2)) / (self.f.unsqueeze(-2)) def J_normalize(self, p2d: torch.Tensor, wrt: str = "f"): """Jacobian of the normalization function.""" # ... x N x 2 x 2 if wrt == "f": J_f = -(p2d - self.c.unsqueeze(-2)) / ((self.f.unsqueeze(-2)) ** 2) return torch.diag_embed(J_f) elif wrt == "pts": J_pts = 1 / self.f return torch.diag_embed(J_pts) else: raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}") def pixel_coordinates(self) -> torch.Tensor: """Pixel coordinates in self frame. Returns: torch.Tensor: Pixel coordinates as a tensor of shape (B, h * w, 2). """ w, h = self.size[0].unbind(-1) h, w = h.round().to(int), w.round().to(int) # create grid x = torch.arange(0, w, dtype=self.dtype, device=self.device) y = torch.arange(0, h, dtype=self.dtype, device=self.device) x, y = torch.meshgrid(x, y, indexing="xy") xy = torch.stack((x, y), dim=-1).reshape(-1, 2) # shape (h * w, 2) # add batch dimension (normalize() would broadcast but we make it explicit) B = self.shape[0] xy = xy.unsqueeze(0).expand(B, -1, -1) # if B > 0 else xy return xy.to(self.device).to(self.dtype) def normalized_image_coordinates(self) -> torch.Tensor: """Normalized image coordinates in self frame. Returns: torch.Tensor: Normalized image coordinates as a tensor of shape (B, h * w, 3). """ xy = self.pixel_coordinates() uv1, _ = self.image2world(xy) B = self.shape[0] uv1 = uv1.reshape(B, -1, 3) return uv1.to(self.device).to(self.dtype) @autocast def pixel_bearing_many(self, p3d: torch.Tensor) -> torch.Tensor: """Get the bearing vectors of pixel coordinates. Args: p2d (torch.Tensor): Pixel coordinates as a tensor of shape (..., 3). Returns: torch.Tensor: Bearing vectors as a tensor of shape (..., 3). """ return F.normalize(p3d, dim=-1) @autocast def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: """Transform 3D points into 2D pixel coordinates.""" p2d, visible = self.project(p3d) p2d, mask = self.distort(p2d) p2d = self.denormalize(p2d) valid = visible & mask & self.in_image(p2d) return p2d, valid @autocast def J_world2image(self, p3d: torch.Tensor): """Jacobian of the world2image function.""" p2d_proj, valid = self.project(p3d) J_dnorm = self.J_denormalize() J_dist = self.J_distort(p2d_proj) J_proj = self.J_project(p3d) J = torch.einsum("...ij,...jk,...kl->...il", J_dnorm, J_dist, J_proj) return J, valid @autocast def image2world(self, p2d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Transform point in the image plane to 3D world coordinates.""" p2d = self.normalize(p2d) p2d, valid = self.undistort(p2d) ones = p2d.new_ones(p2d.shape[:-1] + (1,)) p3d = torch.cat([p2d, ones], -1) return p3d, valid @autocast def J_image2world(self, p2d: torch.Tensor, wrt: str = "f") -> Tuple[torch.Tensor, torch.Tensor]: """Jacobian of the image2world function.""" if wrt == "dist": p2d_norm = self.normalize(p2d) return self.J_undistort(p2d_norm, wrt) elif wrt == "f": J_norm2f = self.J_normalize(p2d, wrt) p2d_norm = self.normalize(p2d) J_dist2norm = self.J_undistort(p2d_norm, "pts") return torch.einsum("...ij,...jk->...ik", J_dist2norm, J_norm2f) else: raise ValueError(f"Unknown wrt: {wrt}") @autocast def undistort_image(self, img: torch.Tensor) -> torch.Tensor: """Undistort an image using the distortion model.""" assert self.shape[0] == 1, "Batch size must be 1." W, H = self.size.unbind(-1) H, W = H.int().item(), W.int().item() x, y = torch.arange(0, W), torch.arange(0, H) x, y = torch.meshgrid(x, y, indexing="xy") coords = torch.stack((x, y), dim=-1).reshape(-1, 2) p3d, _ = self.pinhole().image2world(coords.to(self.device).to(self.dtype)) p2d, _ = self.world2image(p3d) mapx, mapy = p2d[..., 0].reshape((1, H, W)), p2d[..., 1].reshape((1, H, W)) grid = torch.stack((mapx, mapy), dim=-1) grid = 2.0 * grid / torch.tensor([W - 1, H - 1]).to(grid) - 1 return F.grid_sample(img, grid, align_corners=True) def get_img_from_pano( self, pano_img: torch.Tensor, gravity: Gravity, yaws: torch.Tensor = 0.0, resize_factor: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Render an image from a panorama. Args: pano_img (torch.Tensor): Panorama image of shape (3, H, W) in [0, 1]. gravity (Gravity): Gravity direction of the camera. yaws (torch.Tensor | list, optional): Yaw angle in radians. Defaults to 0.0. resize_factor (torch.Tensor, optional): Resize the panorama to be a multiple of the field of view. Defaults to 1. Returns: torch.Tensor: Image rendered from the panorama. """ B = self.shape[0] if B > 0: assert self.size[..., 0].unique().shape[0] == 1, "All images must have the same width." assert self.size[..., 1].unique().shape[0] == 1, "All images must have the same height." w, h = self.size[0].unbind(-1) h, w = h.round().to(int), w.round().to(int) if isinstance(yaws, (int, float)): yaws = [yaws] if isinstance(resize_factor, (int, float)): resize_factor = [resize_factor] yaws = ( yaws.to(self.dtype).to(self.device) if isinstance(yaws, torch.Tensor) else self.new_tensor(yaws) ) if isinstance(resize_factor, torch.Tensor): resize_factor = resize_factor.to(self.dtype).to(self.device) elif resize_factor is not None: resize_factor = self.new_tensor(resize_factor) assert isinstance(pano_img, torch.Tensor), "Panorama image must be a torch.Tensor." pano_img = pano_img if pano_img.dim() == 4 else pano_img.unsqueeze(0) # B x 3 x H x W pano_imgs = [] for i, yaw in enumerate(yaws): if resize_factor is not None: # resize the panorama such that the fov of the panorama has the same height as the # image vfov = self.vfov[i] if B != 0 else self.vfov scale = torch.pi / float(vfov) * float(h) / pano_img.shape[-2] * resize_factor[i] pano_shape = (int(pano_img.shape[-2] * scale), int(pano_img.shape[-1] * scale)) mode = "bicubic" if scale >= 1 else "area" resized_pano = F.interpolate(pano_img, size=pano_shape, mode=mode) else: # make sure to copy: resized_pano = pano_img resized_pano = pano_img pano_shape = pano_img.shape[-2:][::-1] pano_imgs.append((resized_pano, pano_shape)) xy = self.pixel_coordinates() uv1, valid = self.image2world(xy) bearings = self.pixel_bearing_many(uv1) # rotate bearings R_yaw = rad2rotmat(self.new_zeros(yaw.shape), self.new_zeros(yaw.shape), yaws) rotated_bearings = bearings @ gravity.R @ R_yaw # spherical coordinates lon = torch.atan2(rotated_bearings[..., 0], rotated_bearings[..., 2]) lat = torch.atan2( rotated_bearings[..., 1], torch.norm(rotated_bearings[..., [0, 2]], dim=-1) ) images = [] for idx, (resized_pano, pano_shape) in enumerate(pano_imgs): min_lon, max_lon = -torch.pi, torch.pi min_lat, max_lat = -torch.pi / 2.0, torch.pi / 2.0 min_x, max_x = 0, pano_shape[0] - 1.0 min_y, max_y = 0, pano_shape[1] - 1.0 # map Spherical Coordinates to Panoramic Coordinates nx = (lon[idx] - min_lon) / (max_lon - min_lon) * (max_x - min_x) + min_x ny = (lat[idx] - min_lat) / (max_lat - min_lat) * (max_y - min_y) + min_y # reshape and cast to numpy for remap mapx = nx.reshape((1, h, w)) mapy = ny.reshape((1, h, w)) grid = torch.stack((mapx, mapy), dim=-1) # Add batch dimension # Normalize to [-1, 1] grid = 2.0 * grid / torch.tensor([pano_shape[-2] - 1, pano_shape[-1] - 1]).to(grid) - 1 # Apply grid sample image = F.grid_sample(resized_pano, grid, align_corners=True)#True images.append(image) return torch.concatenate(images, 0) if B > 0 else images[0] def __repr__(self): """Print the Camera object.""" return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"