"""Visualization of predicted and ground truth for a single batch.""" """Adapted from https://github.com/cvg/GeoCalib""" from typing import Any, Dict import numpy as np import torch from scripts.camera.geometry.perspective_fields import get_latitude_field from scripts.camera.utils.conversions import rad2deg from scripts.camera.utils.tensor import batch_to_device from scripts.camera.visualization.viz2d import ( plot_confidences, plot_heatmaps, plot_image_grid, plot_latitudes, plot_vector_fields, ) def make_up_figure( pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2 ) -> Dict[str, Any]: """Get predicted and ground truth up fields and errors. Args: pred (Dict[str, torch.Tensor]): Predicted up field. data (Dict[str, torch.Tensor]): Ground truth up field. n_pairs (int): Number of pairs to visualize. Returns: Dict[str, Any]: Dictionary with figure. """ pred = batch_to_device(pred, "cpu", detach=True) data = batch_to_device(data, "cpu", detach=True) n_pairs = min(n_pairs, len(data["image"])) if "up_field" not in pred.keys(): return {} up_fields = [] for i in range(n_pairs): row = [data["up_field"][i]] titles = ["Up GT"] if "up_confidence" in pred.keys(): row += [pred["up_confidence"][i]] titles += ["Up Confidence"] row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row] up_fields.append(row) # create figure N, M = len(up_fields), len(up_fields[0]) + 1 imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)] fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True) ax = np.array(ax) for i in range(n_pairs): plot_vector_fields([up_fields[i][0]], axes=ax[i, [1]]) #plot_heatmaps([up_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]]) if "up_confidence" in pred.keys(): plot_confidences([up_fields[i][3]], axes=ax[i, [4]]) return {"up": fig} def make_latitude_figure( pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2 ) -> Dict[str, Any]: """Get predicted and ground truth latitude fields and errors. Args: pred (Dict[str, torch.Tensor]): Predicted latitude field. data (Dict[str, torch.Tensor]): Ground truth latitude field. n_pairs (int, optional): Number of pairs to visualize. Defaults to 2. Returns: Dict[str, Any]: Dictionary with figure. """ pred = batch_to_device(pred, "cpu", detach=True) data = batch_to_device(data, "cpu", detach=True) n_pairs = min(n_pairs, len(data["image"])) latitude_fields = [] if "latitude_field" not in pred.keys(): return {} for i in range(n_pairs): row = [ rad2deg(data["latitude_field"][i][0]), #rad2deg(pred["latitude_field"][i][0]), #errors[i], ] titles = ["Latitude GT"] if "latitude_confidence" in pred.keys(): row += [pred["latitude_confidence"][i]] titles += ["Latitude Confidence"] row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row] latitude_fields.append(row) # create figure N, M = len(latitude_fields), len(latitude_fields[0]) + 1 imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)] fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True) ax = np.array(ax) for i in range(n_pairs): plot_latitudes([latitude_fields[i][0]], is_radians=False, axes=ax[i, [1]]) #plot_heatmaps([latitude_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]]) if "latitude_confidence" in pred.keys(): plot_confidences([latitude_fields[i][3]], axes=ax[i, [4]]) return {"latitude": fig} def make_camera_figure( pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2 ) -> Dict[str, Any]: """Get predicted and ground truth camera parameters. Args: pred (Dict[str, torch.Tensor]): Predicted camera parameters. data (Dict[str, torch.Tensor]): Ground truth camera parameters. n_pairs (int, optional): Number of pairs to visualize. Defaults to 2. Returns: Dict[str, Any]: Dictionary with figure. """ pred = batch_to_device(pred, "cpu", detach=True) data = batch_to_device(data, "cpu", detach=True) n_pairs = min(n_pairs, len(data["image"])) if "camera" not in pred.keys(): return {} latitudes = [] for i in range(n_pairs): titles = ["Cameras GT"] row = [get_latitude_field(data["camera"][i], data["gravity"][i])] if "camera" in pred.keys() and "gravity" in pred.keys(): row += [get_latitude_field(pred["camera"][i], pred["gravity"][i])] titles += ["Cameras Pred"] row = [rad2deg(r).squeeze(-1).float().numpy()[0] for r in row] latitudes.append(row) # create figure N, M = len(latitudes), len(latitudes[0]) + 1 imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)] fig, ax = plot_image_grid(imgs, titles=[["Image"] + titles] * N, return_fig=True, set_lim=True) ax = np.array(ax) for i in range(n_pairs): plot_latitudes(latitudes[i], is_radians=False, axes=ax[i, 1:]) return {"camera": fig} def make_perspective_figures( pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2 ) -> Dict[str, Any]: """Get predicted and ground truth perspective fields. Args: pred (Dict[str, torch.Tensor]): Predicted perspective fields. data (Dict[str, torch.Tensor]): Ground truth perspective fields. n_pairs (int, optional): Number of pairs to visualize. Defaults to 2. Returns: Dict[str, Any]: Dictionary with figure. """ n_pairs = min(n_pairs, len(data["image"])) figures = make_up_figure(pred, data, n_pairs) figures |= make_latitude_figure(pred, data, n_pairs) #figures |= make_camera_figure(pred, data, n_pairs) {f.tight_layout() for f in figures.values()} return figures