Spaces:
Runtime error
Runtime error
File size: 48,555 Bytes
7cd14d8 01c78c5 7cd14d8 e73999d 7cd14d8 01c78c5 7cd14d8 d5b5b09 7cd14d8 9f99713 7cd14d8 01c78c5 7cd14d8 e73999d 7cd14d8 e73999d 7cd14d8 01c78c5 e73999d 7cd14d8 e73999d 7cd14d8 e73999d 7cd14d8 e73999d 7cd14d8 e73999d 7cd14d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
FastAPI Inference Server (OpenAI-compatible) for Qwen3-VL multimodal model.
- Default model: Qwen/Qwen3-VL-2B-Thinking
- Endpoints:
* GET /openapi.yaml (OpenAPI schema in YAML)
* GET /health (readiness + context report)
* POST /v1/chat/completions (non-stream and streaming SSE)
* POST /v1/cancel/{session_id} (custom cancel endpoint)
Notes:
- Uses Hugging Face Transformers with trust_remote_code=True.
- Supports OpenAI-style chat messages with text, image_url/input_image, video_url/input_video.
- Streaming SSE supports resume (session_id + Last-Event-ID) with optional SQLite persistence.
- Auto prompt compression prevents context overflow with a simple truncate strategy.
"""
import os
import io
import re
import base64
import tempfile
import contextlib
from typing import Any, Dict, List, Optional, Tuple, Deque, Literal
from fastapi import FastAPI, HTTPException, Request, Header, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ConfigDict, Field
from starlette.responses import JSONResponse
from fastapi.responses import StreamingResponse, Response
import json
import yaml
import threading
import time
import uuid
import sqlite3
from collections import deque
import subprocess
import sys
import shutil
# Load env
try:
from dotenv import load_dotenv
load_dotenv()
except Exception:
pass
# Ensure HF cache dirs are relative to this project by default
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEFAULT_HF_CACHE = os.path.join(ROOT_DIR, "hf-cache")
if not os.getenv("HF_HOME"):
os.environ["HF_HOME"] = DEFAULT_HF_CACHE
if not os.getenv("TRANSFORMERS_CACHE"):
os.environ["TRANSFORMERS_CACHE"] = DEFAULT_HF_CACHE
# Create directory eagerly to avoid later mkdir races
try:
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
except Exception:
pass
# Optional heavy deps are imported lazily inside Engine to improve startup UX
import requests
from PIL import Image
import numpy as np
from huggingface_hub import snapshot_download, list_repo_files, hf_hub_download, get_hf_file_metadata
# Server config
PORT = int(os.getenv("PORT", "3000"))
DEFAULT_MODEL_ID = os.getenv("MODEL_REPO_ID", "Qwen/Qwen3-VL-2B-Thinking")
HF_TOKEN = os.getenv("HF_TOKEN", "").strip() or None
# Default max tokens: honor env, fallback to 4096 as previously discussed
DEFAULT_MAX_TOKENS = int(os.getenv("MAX_TOKENS", "4096"))
DEFAULT_TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
MAX_VIDEO_FRAMES = int(os.getenv("MAX_VIDEO_FRAMES", "16"))
DEVICE_MAP = os.getenv("DEVICE_MAP", "auto")
TORCH_DTYPE = os.getenv("TORCH_DTYPE", "auto")
# Persistent session store (SQLite)
PERSIST_SESSIONS = str(os.getenv("PERSIST_SESSIONS", "0")).lower() in ("1", "true", "yes", "y")
SESSIONS_DB_PATH = os.getenv("SESSIONS_DB_PATH", "sessions.db")
SESSIONS_TTL_SECONDS = int(os.getenv("SESSIONS_TTL_SECONDS", "600"))
# Auto-cancel if all clients disconnect for duration (seconds). 0 disables it.
CANCEL_AFTER_DISCONNECT_SECONDS = int(os.getenv("CANCEL_AFTER_DISCONNECT_SECONDS", "3600"))
# Auto compression settings
ENABLE_AUTO_COMPRESSION = str(os.getenv("ENABLE_AUTO_COMPRESSION", "1")).lower() in ("1", "true", "yes", "y")
CONTEXT_MAX_TOKENS_AUTO = int(os.getenv("CONTEXT_MAX_TOKENS_AUTO", "0")) # 0 -> infer from model/tokenizer
CONTEXT_SAFETY_MARGIN = int(os.getenv("CONTEXT_SAFETY_MARGIN", "256"))
COMPRESSION_STRATEGY = os.getenv("COMPRESSION_STRATEGY", "truncate") # truncate | summarize (future)
# Eager model loading (download/check at startup before serving traffic)
EAGER_LOAD_MODEL = str(os.getenv("EAGER_LOAD_MODEL", "1")).lower() in ("1", "true", "yes", "y")
def _log(msg: str):
# Consistent, flush-immediate startup logs
print(f"[startup] {msg}", flush=True)
def prefetch_model_assets(repo_id: str, token: Optional[str]) -> Optional[str]:
"""
Reproducible prefetch driven by huggingface-cli:
- Downloads the ENTIRE repo using CLI (visible progress bar).
- Returns the local directory path where the repo is mirrored.
- If CLI is unavailable, falls back to verbose API prefetch.
"""
try:
# Enable accelerated transfer only if hf_transfer is installed; otherwise disable to avoid runtime errors on Spaces
try:
import importlib.util as _imputil
if _imputil.find_spec("hf_transfer") is not None:
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
else:
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
except Exception:
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
# XET acceleration if available; harmless if missing
os.environ.setdefault("HF_HUB_ENABLE_XET", "1")
cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or ""
if cache_dir:
os.makedirs(cache_dir, exist_ok=True)
# Resolve huggingface-cli path (Windows-friendly)
cli_path = shutil.which("huggingface-cli")
if not cli_path:
candidates = []
appdata = os.getenv("APPDATA")
if appdata:
candidates.append(os.path.join(appdata, "Python", "Python312", "Scripts", "huggingface-cli.exe"))
candidates.append(os.path.join(os.path.dirname(sys.executable), "Scripts", "huggingface-cli.exe"))
cli_path = next((p for p in candidates if os.path.exists(p)), None)
# Preferred: one-shot CLI download for the whole repo (shows live progress)
if cli_path:
local_root = os.path.join(cache_dir if cache_dir else ".", repo_id.replace("/", "_"))
os.makedirs(local_root, exist_ok=True)
_log(f"Using huggingface-cli to download entire repo -> '{local_root}'")
cmd = [
cli_path,
"download",
repo_id,
"--repo-type",
"model",
"--local-dir",
local_root,
"--local-dir-use-symlinks",
"False",
"--resume",
]
if token:
cmd += ["--token", token]
# Inherit stdio; users will see a proper progress bar
subprocess.run(cmd, check=False)
# Verify we have the essential files
if os.path.exists(os.path.join(local_root, "config.json")) or os.path.exists(os.path.join(local_root, "model.safetensors")):
_log("CLI prefetch completed")
return local_root
else:
_log("CLI prefetch finished but essential files not found; will fallback to API mirroring")
# Fallback: verbose API-driven prefetch with per-file logging
_log(f"Prefetching (API) repo={repo_id} to cache='{cache_dir}'")
try:
files = list_repo_files(repo_id, repo_type="model", token=token)
except Exception as e:
_log(f"list_repo_files failed ({type(e).__name__}: {e}); falling back to snapshot_download")
snapshot_download(repo_id, token=token, local_files_only=False)
_log("Prefetch completed (snapshot)")
return None
total = len(files)
_log(f"Found {total} files to ensure cached (API)")
for i, fn in enumerate(files, start=1):
try:
meta = get_hf_file_metadata(repo_id, fn, repo_type="model", token=token)
size_bytes = meta.size or 0
except Exception:
size_bytes = 0
size_mb = size_bytes / (1024 * 1024) if size_bytes else 0.0
_log(f"[{i}/{total}] fetching '{fn}' (~{size_mb:.2f} MB)")
_ = hf_hub_download(
repo_id=repo_id,
filename=fn,
repo_type="model",
token=token,
local_files_only=False,
resume_download=True,
)
_log(f"[{i}/{total}] done '{fn}'")
_log("Prefetch completed (API)")
return None
except Exception as e:
_log(f"Prefetch skipped: {type(e).__name__}: {e}")
return None
def is_data_url(url: str) -> bool:
return url.startswith("data:") and ";base64," in url
def is_http_url(url: str) -> bool:
return url.startswith("http://") or url.startswith("https://")
def decode_base64_to_bytes(b64: str) -> bytes:
# strip possible "data:*;base64," prefix
if "base64," in b64:
b64 = b64.split("base64,", 1)[1]
return base64.b64decode(b64, validate=False)
def fetch_bytes(url: str, headers: Optional[Dict[str, str]] = None, timeout: int = 60) -> bytes:
if not is_http_url(url):
raise ValueError(f"Only http(s) URLs supported for fetch, got: {url}")
resp = requests.get(url, headers=headers or {}, timeout=timeout, stream=True)
resp.raise_for_status()
return resp.content
def load_image_from_any(src: Dict[str, Any]) -> Image.Image:
"""
src can be:
- { "url": "http(s)://..." } (also supports data URL)
- { "b64_json": "<base64>" }
- { "path": "local_path" } (optional)
"""
if "b64_json" in src and src["b64_json"]:
data = decode_base64_to_bytes(str(src["b64_json"]))
return Image.open(io.BytesIO(data)).convert("RGB")
if "url" in src and src["url"]:
url = str(src["url"])
if is_data_url(url):
data = decode_base64_to_bytes(url)
return Image.open(io.BytesIO(data)).convert("RGB")
if is_http_url(url):
data = fetch_bytes(url)
return Image.open(io.BytesIO(data)).convert("RGB")
# treat as local path
if os.path.exists(url):
with open(url, "rb") as f:
return Image.open(io.BytesIO(f.read())).convert("RGB")
raise ValueError(f"Invalid image url/path: {url}")
if "path" in src and src["path"]:
p = str(src["path"])
if os.path.exists(p):
with open(p, "rb") as f:
return Image.open(io.BytesIO(f.read())).convert("RGB")
raise ValueError(f"Image path not found: {p}")
raise ValueError("Unsupported image source payload")
def write_bytes_tempfile(data: bytes, suffix: str) -> str:
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
with tmp as f:
f.write(data)
return tmp.name
def load_video_frames_from_any(src: Dict[str, Any], max_frames: int = MAX_VIDEO_FRAMES) -> List[Image.Image]:
"""
Returns a list of PIL.Image frames (RGB) sampled up to max_frames.
src can be:
- { "url": "http(s)://..." } (mp4/mov/webm/etc.)
- { "b64_json": "<base64 of a video file>" }
- { "path": "local_path" }
"""
# Prefer imageio.v3 if present, fallback to OpenCV
# We load all frames then uniform sample if too many.
def _load_all_frames(path: str) -> List[Image.Image]:
frames: List[Image.Image] = []
with contextlib.suppress(ImportError):
import imageio.v3 as iio
arr_iter = iio.imiter(path) # yields numpy arrays HxWxC
for arr in arr_iter:
if arr is None:
continue
if arr.ndim == 2:
arr = np.stack([arr, arr, arr], axis=-1)
if arr.shape[-1] == 4:
arr = arr[..., :3]
frames.append(Image.fromarray(arr).convert("RGB"))
return frames
# Fallback to OpenCV
import cv2 # type: ignore
cap = cv2.VideoCapture(path)
ok, frame = cap.read()
while ok:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))
ok, frame = cap.read()
cap.release()
return frames
# Resolve to a local path
local_path = None
if "b64_json" in src and src["b64_json"]:
data = decode_base64_to_bytes(str(src["b64_json"]))
local_path = write_bytes_tempfile(data, suffix=".mp4")
elif "url" in src and src["url"]:
url = str(src["url"])
if is_data_url(url):
data = decode_base64_to_bytes(url)
local_path = write_bytes_tempfile(data, suffix=".mp4")
elif is_http_url(url):
data = fetch_bytes(url)
local_path = write_bytes_tempfile(data, suffix=".mp4")
elif os.path.exists(url):
local_path = url
else:
raise ValueError(f"Invalid video url/path: {url}")
elif "path" in src and src["path"]:
p = str(src["path"])
if os.path.exists(p):
local_path = p
else:
raise ValueError(f"Video path not found: {p}")
else:
raise ValueError("Unsupported video source payload")
frames = _load_all_frames(local_path)
# Uniform sample if too many frames
if len(frames) > max_frames and max_frames > 0:
idxs = np.linspace(0, len(frames) - 1, max_frames).astype(int).tolist()
frames = [frames[i] for i in idxs]
return frames
class ChatRequest(BaseModel):
"""OpenAI-compatible Chat Completions request body."""
model: Optional[str] = Field(default=None, description="Model id (defaults to env MODEL_REPO_ID).")
messages: List[Dict[str, Any]] = Field(description="OpenAI-style messages array. Supports text, image_url/input_image, video_url/input_video parts.")
max_tokens: Optional[int] = Field(default=None, description="Max new tokens to generate.")
temperature: Optional[float] = Field(default=None, description="Sampling temperature.")
stream: Optional[bool] = Field(default=None, description="When true, returns Server-Sent Events stream.")
session_id: Optional[str] = Field(default=None, description="Optional session id for resumable SSE.")
# Pydantic v2 schema extras with rich examples
model_config = ConfigDict(
json_schema_extra={
"examples": [
{
"summary": "Text-only",
"value": {
"messages": [
{"role": "user", "content": "Hello, summarize the benefits of multimodal LLMs."}
],
"max_tokens": 128
}
},
{
"summary": "Image by URL",
"value": {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{"type": "image_url", "image_url": {"url": "https://example.com/cat.jpg"}}
]
}
],
"max_tokens": 128
}
},
{
"summary": "Video by URL (streaming SSE)",
"value": {
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this clip briefly."},
{"type": "video_url", "video_url": {"url": "https://example.com/clip.mp4"}}
]
}
],
"stream": True,
"max_tokens": 128
}
}
]
}
)
class MessageModel(BaseModel):
role: Literal["system", "user", "assistant"]
content: str
class ChoiceModel(BaseModel):
index: int
message: MessageModel
finish_reason: Optional[str] = None
class UsageModel(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
"""Non-streaming Chat Completions response (when stream=false)."""
id: str
object: str
created: int
model: str
choices: List[ChoiceModel]
usage: UsageModel
context: Dict[str, Any] = {}
class HealthResponse(BaseModel):
ok: bool
modelReady: bool
modelId: str
error: Optional[str] = None
context: Optional[Dict[str, Any]] = None
class CancelResponse(BaseModel):
ok: bool
session_id: str
class Engine:
def __init__(self, model_id: str, hf_token: Optional[str] = None):
# Lazy import heavy deps
from transformers import AutoProcessor, AutoModelForCausalLM, AutoModelForVision2Seq, AutoModel
# AutoModelForImageTextToText is the v5+ replacement for Vision2Seq in Transformers
try:
from transformers import AutoModelForImageTextToText # type: ignore
except Exception:
AutoModelForImageTextToText = None # type: ignore
model_kwargs: Dict[str, Any] = {
"trust_remote_code": True,
}
if hf_token:
# Only pass 'token' (use_auth_token is deprecated and causes conflicts)
model_kwargs["token"] = hf_token
# Device and dtype
model_kwargs["device_map"] = DEVICE_MAP
model_kwargs["torch_dtype"] = TORCH_DTYPE if TORCH_DTYPE != "auto" else "auto"
# Processor (handles text + images/videos)
proc_kwargs: Dict[str, Any] = {"trust_remote_code": True}
if hf_token:
proc_kwargs["token"] = hf_token
self.processor = AutoProcessor.from_pretrained(
model_id,
**proc_kwargs,
) # pragma: no cover
# Prefer ImageTextToText (Transformers v5 path), then Vision2Seq, then CausalLM as a last resort
model = None
if 'AutoModelForImageTextToText' in globals() and AutoModelForImageTextToText is not None:
try:
model = AutoModelForImageTextToText.from_pretrained(model_id, **model_kwargs) # pragma: no cover
except Exception:
model = None
if model is None:
try:
model = AutoModelForVision2Seq.from_pretrained(model_id, **model_kwargs) # pragma: no cover
except Exception:
model = None
if model is None:
try:
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs) # pragma: no cover
except Exception:
model = None
if model is None:
# Generic AutoModel as last-resort with trust_remote_code to load custom architectures
model = AutoModel.from_pretrained(model_id, **model_kwargs) # pragma: no cover
self.model = model.eval() # pragma: no cover
self.model_id = model_id
self.tokenizer = getattr(self.processor, "tokenizer", None)
self.last_context_info: Dict[str, Any] = {}
def _model_max_context(self) -> int:
try:
cfg = getattr(self.model, "config", None)
if cfg is not None:
v = getattr(cfg, "max_position_embeddings", None)
if isinstance(v, int) and v > 0 and v < 10_000_000:
return v
except Exception:
pass
try:
mx = int(getattr(self.tokenizer, "model_max_length", 0) or 0)
if mx > 0 and mx < 10_000_000_000:
return mx
except Exception:
pass
return 32768
def _count_prompt_tokens(self, text: str) -> int:
try:
if self.tokenizer is not None:
enc = self.tokenizer([text], add_special_tokens=False, return_attention_mask=False)
ids = enc["input_ids"][0]
return len(ids)
except Exception:
pass
return max(1, int(len(text.split()) * 1.3))
def _auto_compress_if_needed(
self, mm_messages: List[Dict[str, Any]], max_new_tokens: int
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
info: Dict[str, Any] = {}
# Build once to measure
text0 = self.processor.apply_chat_template(mm_messages, tokenize=False, add_generation_prompt=True)
prompt_tokens = self._count_prompt_tokens(text0)
max_ctx = CONTEXT_MAX_TOKENS_AUTO if CONTEXT_MAX_TOKENS_AUTO > 0 else self._model_max_context()
budget = max(1024, max_ctx - CONTEXT_SAFETY_MARGIN - int(max_new_tokens))
if not ENABLE_AUTO_COMPRESSION or prompt_tokens <= budget:
info = {
"compressed": False,
"prompt_tokens": int(prompt_tokens),
"max_context": int(max_ctx),
"budget": int(budget),
"strategy": COMPRESSION_STRATEGY,
"dropped_messages": 0,
}
return mm_messages, info
# Truncate earliest non-system messages until within budget
msgs = list(mm_messages)
dropped = 0
guard = 0
while True:
text = self.processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
prompt_tokens = self._count_prompt_tokens(text)
if prompt_tokens <= budget or len(msgs) <= 1:
break
# drop earliest non-system
drop_idx = None
for j, m in enumerate(msgs):
if (m.get("role") or "user") != "system":
drop_idx = j
break
if drop_idx is None:
break
msgs.pop(drop_idx)
dropped += 1
guard += 1
if guard > 10000:
break
info = {
"compressed": True,
"prompt_tokens": int(prompt_tokens),
"max_context": int(max_ctx),
"budget": int(budget),
"strategy": "truncate",
"dropped_messages": int(dropped),
}
return msgs, info
def get_context_report(self) -> Dict[str, Any]:
try:
tk_max = int(getattr(self.tokenizer, "model_max_length", 0) or 0)
except Exception:
tk_max = 0
return {
"compressionEnabled": ENABLE_AUTO_COMPRESSION,
"strategy": COMPRESSION_STRATEGY,
"safetyMargin": CONTEXT_SAFETY_MARGIN,
"modelMaxContext": self._model_max_context(),
"tokenizerModelMaxLength": tk_max,
"last": self.last_context_info or {},
}
def build_mm_messages(
self, openai_messages: List[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Image.Image], List[List[Image.Image]]]:
"""
Convert OpenAI-style messages to Qwen multimodal messages.
Returns:
- messages for apply_chat_template
- flat list of images in encounter order
- list of videos (each is list of PIL frames)
"""
mm_msgs: List[Dict[str, Any]] = []
images: List[Image.Image] = []
videos: List[List[Image.Image]] = []
for msg in openai_messages:
role = msg.get("role", "user")
content = msg.get("content", "")
parts: List[Dict[str, Any]] = []
if isinstance(content, str):
if content:
parts.append({"type": "text", "text": content})
elif isinstance(content, list):
for p in content:
ptype = p.get("type")
if ptype == "text":
txt = p.get("text", "")
if txt:
parts.append({"type": "text", "text": txt})
elif ptype in ("image_url", "input_image"):
src: Dict[str, Any] = {}
if ptype == "image_url":
u = (p.get("image_url") or {}).get("url") if isinstance(p.get("image_url"), dict) else p.get("image_url")
src["url"] = u
else:
b64 = p.get("image") or p.get("b64_json") or p.get("data") or (p.get("image_url") or {}).get("url")
if b64:
src["b64_json"] = b64
try:
img = load_image_from_any(src)
images.append(img)
parts.append({"type": "image", "image": img})
except Exception as e:
raise ValueError(f"Failed to parse image part: {e}") from e
elif ptype in ("video_url", "input_video"):
src = {}
if ptype == "video_url":
u = (p.get("video_url") or {}).get("url") if isinstance(p.get("video_url"), dict) else p.get("video_url")
src["url"] = u
else:
b64 = p.get("video") or p.get("b64_json") or p.get("data")
if b64:
src["b64_json"] = b64
try:
frames = load_video_frames_from_any(src, max_frames=MAX_VIDEO_FRAMES)
videos.append(frames)
parts.append({"type": "video", "video": frames})
except Exception as e:
raise ValueError(f"Failed to parse video part: {e}") from e
else:
if isinstance(p, dict):
txt = p.get("text")
if isinstance(txt, str) and txt:
parts.append({"type": "text", "text": txt})
else:
if content:
parts.append({"type": "text", "text": str(content)})
mm_msgs.append({"role": role, "content": parts})
return mm_msgs, images, videos
def infer(self, messages: List[Dict[str, Any]], max_tokens: int, temperature: float) -> str:
mm_messages, images, videos = self.build_mm_messages(messages)
# Auto-compress if needed based on context budget
mm_messages, ctx_info = self._auto_compress_if_needed(mm_messages, max_tokens)
self.last_context_info = ctx_info
# Build chat template
text = self.processor.apply_chat_template(
mm_messages,
tokenize=False,
add_generation_prompt=True,
)
proc_kwargs: Dict[str, Any] = {"text": [text], "return_tensors": "pt"}
if images:
proc_kwargs["images"] = images
if videos:
proc_kwargs["videos"] = videos
inputs = self.processor(**proc_kwargs)
# Move tensors to model device if present
try:
device = getattr(self.model, "device", None) or next(self.model.parameters()).device
inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
except Exception:
pass
do_sample = temperature is not None and float(temperature) > 0.0
gen_ids = self.model.generate(
**inputs,
max_new_tokens=int(max_tokens),
temperature=float(temperature),
do_sample=do_sample,
use_cache=True,
)
# Decode
output = self.processor.batch_decode(
gen_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
# Best-effort: return only the assistant reply after the last template marker if present
parts = re.split(r"\n?assistant:\s*", output, flags=re.IGNORECASE)
if len(parts) >= 2:
return parts[-1].strip()
return output.strip()
def infer_stream(
self,
messages: List[Dict[str, Any]],
max_tokens: int,
temperature: float,
cancel_event: Optional[threading.Event] = None,
):
from transformers import TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList
mm_messages, images, videos = self.build_mm_messages(messages)
# Auto-compress if needed based on context budget
mm_messages, ctx_info = self._auto_compress_if_needed(mm_messages, max_tokens)
self.last_context_info = ctx_info
text = self.processor.apply_chat_template(
mm_messages,
tokenize=False,
add_generation_prompt=True,
)
proc_kwargs: Dict[str, Any] = {"text": [text], "return_tensors": "pt"}
if images:
proc_kwargs["images"] = images
if videos:
proc_kwargs["videos"] = videos
inputs = self.processor(**proc_kwargs)
try:
device = getattr(self.model, "device", None) or next(self.model.parameters()).device
inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
except Exception:
pass
do_sample = temperature is not None and float(temperature) > 0.0
streamer = TextIteratorStreamer(
getattr(self.processor, "tokenizer", None),
skip_prompt=True,
skip_special_tokens=True,
)
gen_kwargs = dict(
**inputs,
max_new_tokens=int(max_tokens),
temperature=float(temperature),
do_sample=do_sample,
use_cache=True,
streamer=streamer,
)
# Optional cooperative cancellation via StoppingCriteria
if cancel_event is not None:
class _CancelCrit(StoppingCriteria):
def __init__(self, ev: threading.Event):
self.ev = ev
def __call__(self, input_ids, scores, **kwargs):
return bool(self.ev.is_set())
gen_kwargs["stopping_criteria"] = StoppingCriteriaList([_CancelCrit(cancel_event)])
th = threading.Thread(target=self.model.generate, kwargs=gen_kwargs)
th.start()
for piece in streamer:
if piece:
yield piece
# Simple in-memory resumable SSE session store + optional SQLite persistence
class _SSESession:
def __init__(self, maxlen: int = 2048, ttl_seconds: int = 600):
self.buffer: Deque[Tuple[int, str]] = deque(maxlen=maxlen) # (idx, sse_line_block)
self.last_idx: int = -1
self.created: float = time.time()
self.finished: bool = False
self.cond = threading.Condition()
self.thread: Optional[threading.Thread] = None
self.ttl_seconds = ttl_seconds
# Cancellation + client tracking
self.cancel_event = threading.Event()
self.listeners: int = 0
self.cancel_timer = None # type: ignore
class _SessionStore:
def __init__(self, ttl_seconds: int = 600, max_sessions: int = 256):
self._sessions: Dict[str, _SSESession] = {}
self._lock = threading.Lock()
self._ttl = ttl_seconds
self._max_sessions = max_sessions
def get_or_create(self, sid: str) -> _SSESession:
with self._lock:
sess = self._sessions.get(sid)
if sess is None:
sess = _SSESession(ttl_seconds=self._ttl)
self._sessions[sid] = sess
return sess
def get(self, sid: str) -> Optional[_SSESession]:
with self._lock:
return self._sessions.get(sid)
def gc(self):
now = time.time()
with self._lock:
# remove expired
expired = [k for k, v in self._sessions.items() if (now - v.created) > self._ttl or (v.finished and (now - v.created) > self._ttl / 4)]
for k in expired:
self._sessions.pop(k, None)
# bound session count
if len(self._sessions) > self._max_sessions:
for k, _ in sorted(self._sessions.items(), key=lambda kv: kv[1].created)[: max(0, len(self._sessions) - self._max_sessions)]:
self._sessions.pop(k, None)
class _SQLiteStore:
def __init__(self, db_path: str):
self.db_path = db_path
self._lock = threading.Lock()
self._conn = sqlite3.connect(self.db_path, check_same_thread=False)
self._conn.execute("PRAGMA journal_mode=WAL;")
self._conn.execute("PRAGMA synchronous=NORMAL;")
self._ensure_schema()
def _ensure_schema(self):
cur = self._conn.cursor()
cur.execute(
"CREATE TABLE IF NOT EXISTS sessions (session_id TEXT PRIMARY KEY, created REAL, finished INTEGER DEFAULT 0)"
)
cur.execute(
"CREATE TABLE IF NOT EXISTS events (session_id TEXT, idx INTEGER, data TEXT, created REAL, PRIMARY KEY(session_id, idx))"
)
cur.execute("CREATE INDEX IF NOT EXISTS idx_events_session ON events(session_id, idx)")
self._conn.commit()
def ensure_session(self, session_id: str, created: int):
with self._lock:
self._conn.execute(
"INSERT OR IGNORE INTO sessions(session_id, created, finished) VALUES (?, ?, 0)",
(session_id, float(created)),
)
self._conn.commit()
def append_event(self, session_id: str, idx: int, payload: Dict[str, Any]):
data = json.dumps(payload, ensure_ascii=False)
with self._lock:
self._conn.execute(
"INSERT OR REPLACE INTO events(session_id, idx, data, created) VALUES (?, ?, ?, ?)",
(session_id, idx, data, time.time()),
)
self._conn.commit()
def get_events_after(self, session_id: str, last_idx: int) -> List[Tuple[int, str]]:
with self._lock:
cur = self._conn.execute(
"SELECT idx, data FROM events WHERE session_id=? AND idx>? ORDER BY idx ASC", (session_id, last_idx)
)
return [(int(r[0]), str(r[1])) for r in cur.fetchall()]
def mark_finished(self, session_id: str):
with self._lock:
self._conn.execute("UPDATE sessions SET finished=1 WHERE session_id=?", (session_id,))
self._conn.commit()
def session_meta(self, session_id: str) -> Tuple[bool, int]:
with self._lock:
row = self._conn.execute("SELECT finished FROM sessions WHERE session_id=?", (session_id,)).fetchone()
finished = bool(row[0]) if row else False
row2 = self._conn.execute("SELECT MAX(idx) FROM events WHERE session_id=?", (session_id,)).fetchone()
last_idx = int(row2[0]) if row2 and row2[0] is not None else -1
return finished, last_idx
def gc(self, ttl_seconds: int):
cutoff = time.time() - float(ttl_seconds)
with self._lock:
cur = self._conn.execute("SELECT session_id FROM sessions WHERE finished=1 AND created<?", (cutoff,))
ids = [r[0] for r in cur.fetchall()]
for sid in ids:
self._conn.execute("DELETE FROM events WHERE session_id=?", (sid,))
self._conn.execute("DELETE FROM sessions WHERE session_id=?", (sid,))
self._conn.commit()
def _sse_event(session_id: str, idx: int, payload: Dict[str, Any]) -> str:
# Include SSE id line so clients can send Last-Event-ID to resume.
return f"id: {session_id}:{idx}\n" + f"data: {json.dumps(payload, ensure_ascii=False)}\n\n"
_STORE = _SessionStore()
_DB_STORE = _SQLiteStore(SESSIONS_DB_PATH) if PERSIST_SESSIONS else None
# FastAPI app and OpenAPI tags
tags_metadata = [
{"name": "meta", "description": "Service metadata and OpenAPI schema"},
{"name": "health", "description": "Readiness and runtime info including context window report"},
{"name": "chat", "description": "OpenAI-compatible chat completions (non-stream and streaming SSE)"},
]
app = FastAPI(
title="Qwen3-VL Inference Server",
version="1.0.0",
description="OpenAI-compatible inference server for Qwen3-VL with multimodal support, streaming SSE with resume, context auto-compression, and optional SQLite persistence.",
openapi_tags=tags_metadata,
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Startup hook is defined after get_engine() so globals are initialized first.
# Engine singletons
_engine: Optional[Engine] = None
_engine_error: Optional[str] = None
def get_engine() -> Engine:
global _engine, _engine_error
if _engine is not None:
return _engine
try:
model_id = DEFAULT_MODEL_ID
_log(f"Preparing model '{model_id}' (HF_HOME={os.getenv('HF_HOME')}, cache={os.getenv('TRANSFORMERS_CACHE')})")
local_repo_dir = prefetch_model_assets(model_id, HF_TOKEN)
load_id = local_repo_dir if (local_repo_dir and os.path.exists(os.path.join(local_repo_dir, 'config.json'))) else model_id
_log(f"Loading processor and model from: {load_id}")
_engine = Engine(model_id=load_id, hf_token=HF_TOKEN)
_engine_error = None
_log(f"Model ready: {_engine.model_id}")
return _engine
except Exception as e:
_engine_error = f"{type(e).__name__}: {e}"
_log(f"Engine init failed: {_engine_error}")
raise
# Eager-load model at startup after definitions so it downloads/checks before serving traffic.
@app.on_event("startup")
def _startup_load_model():
if EAGER_LOAD_MODEL:
print("[startup] EAGER_LOAD_MODEL=1: initializing model...")
try:
_ = get_engine()
print("[startup] Model loaded:", _engine.model_id if _engine else "unknown")
except Exception as e:
# Fail fast if model cannot be initialized
print("[startup] Model load failed:", e)
raise
@app.get("/", tags=["meta"])
def root():
"""Liveness check."""
return JSONResponse({"ok": True})
@app.get("/openapi.yaml", tags=["meta"])
def openapi_yaml():
"""Serve OpenAPI schema as YAML for tooling compatibility."""
schema = app.openapi()
yml = yaml.safe_dump(schema, sort_keys=False)
return Response(yml, media_type="application/yaml")
@app.get("/health", tags=["health"], response_model=HealthResponse)
def health():
ready = False
err = None
model_id = DEFAULT_MODEL_ID
global _engine, _engine_error
if _engine is not None:
ready = True
model_id = _engine.model_id
elif _engine_error:
err = _engine_error
ctx = None
try:
if _engine is not None:
ctx = _engine.get_context_report()
except Exception:
ctx = None
return JSONResponse({"ok": True, "modelReady": ready, "modelId": model_id, "error": err, "context": ctx})
@app.post(
"/v1/chat/completions",
tags=["chat"],
response_model=ChatCompletionResponse,
responses={
200: {
"description": "When stream=true, the response is text/event-stream (SSE). When stream=false, JSON body matches ChatCompletionResponse.",
"content": {
"text/event-stream": {
"schema": {"type": "string"},
"examples": {
"sse": {
"summary": "SSE stream example",
"value": "id: sess-123:0\ndata: {\"id\":\"sess-123\",\"object\":\"chat.completion.chunk\",\"choices\":[{\"index\":0,\"delta\":{\"role\":\"assistant\"}}]}\n\n"
}
}
}
},
}
},
)
def chat_completions(
request: Request,
body: ChatRequest,
last_event_id: Optional[str] = Query(default=None, alias="last_event_id", description="Resume SSE from this id: 'session_id:index'"),
last_event_id_header: Optional[str] = Header(default=None, alias="Last-Event-ID", convert_underscores=False, description="SSE resume id 'session_id:index'"),
):
# Ensure engine is loaded
try:
engine = get_engine()
except Exception as e:
raise HTTPException(status_code=503, detail=f"Model not ready: {e}")
if not body or not isinstance(body.messages, list) or len(body.messages) == 0:
raise HTTPException(status_code=400, detail="messages must be a non-empty array")
max_tokens = int(body.max_tokens) if isinstance(body.max_tokens, int) else DEFAULT_MAX_TOKENS
temperature = float(body.temperature) if body.temperature is not None else DEFAULT_TEMPERATURE
do_stream = bool(body.stream)
# Parse Last-Event-ID (header or ?last_event_id) and derive/align session_id
le_id = last_event_id_header or last_event_id
sid_from_header: Optional[str] = None
last_idx_from_header: int = -1
if le_id:
try:
sid_from_header, idx_str = le_id.split(":", 1)
last_idx_from_header = int(idx_str)
except Exception:
sid_from_header = None
last_idx_from_header = -1
session_id = body.session_id or sid_from_header or f"sess-{uuid.uuid4().hex[:12]}"
sess = _STORE.get_or_create(session_id)
created_ts = int(sess.created)
if _DB_STORE is not None:
_DB_STORE.ensure_session(session_id, created_ts)
if not do_stream:
# Non-streaming path
try:
content = engine.infer(body.messages, max_tokens=max_tokens, temperature=temperature)
except ValueError as e:
# Parsing/user payload errors from engine -> HTTP 400
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Inference error: {e}")
now = int(time.time())
prompt_tokens = int((engine.last_context_info or {}).get("prompt_tokens") or 0)
completion_tokens = max(1, len((content or "").split()))
total_tokens = prompt_tokens + completion_tokens
resp: Dict[str, Any] = {
"id": f"chatcmpl-{uuid.uuid4().hex[:12]}",
"object": "chat.completion",
"created": now,
"model": engine.model_id,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": content},
"finish_reason": "stop",
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
},
"context": engine.last_context_info or {},
}
return JSONResponse(resp)
# Streaming SSE with resumable support
def sse_generator():
# Manage listener count and cancel timer
sess.listeners += 1
try:
# Cancel any pending cancel timer when a listener attaches
if getattr(sess, "cancel_timer", None):
try:
sess.cancel_timer.cancel()
except Exception:
pass
sess.cancel_timer = None
# Replay if Last-Event-ID was provided
replay_from = last_idx_from_header if sid_from_header == session_id else -1
if replay_from >= -1:
# First try in-memory buffer
for idx, block in list(sess.buffer):
if idx > replay_from:
yield block.encode("utf-8")
# Optionally pull from SQLite persistence
if _DB_STORE is not None:
try:
for idx, data in _DB_STORE.get_events_after(session_id, replay_from):
block = f"id: {session_id}:{idx}\n" + f"data: {data}\n\n"
yield block.encode("utf-8")
except Exception:
pass
if sess.finished:
# Already finished; send terminal and exit
yield b"data: [DONE]\n\n"
return
# Fresh generation path
# Helper to append to buffers and yield to client
def push(payload: Dict[str, Any]):
sess.last_idx += 1
idx = sess.last_idx
block = _sse_event(session_id, idx, payload)
sess.buffer.append((idx, block))
if _DB_STORE is not None:
try:
_DB_STORE.append_event(session_id, idx, payload)
except Exception:
pass
return block
# Initial assistant role delta
head = {
"id": session_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": engine.model_id,
"choices": [{"index": 0, "delta": {"role": "assistant"}, "finish_reason": None}],
"system_fingerprint": "fastapi",
}
yield push(head).encode("utf-8")
# Stream model pieces
try:
for piece in engine.infer_stream(
body.messages, max_tokens=max_tokens, temperature=temperature, cancel_event=sess.cancel_event
):
if not piece:
continue
payload = {
"id": session_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": engine.model_id,
"choices": [{"index": 0, "delta": {"content": piece}, "finish_reason": None}],
}
yield push(payload).encode("utf-8")
# Cooperative early-exit if cancel requested
if sess.cancel_event.is_set():
break
except Exception:
# On engine error, terminate gracefully
pass
# Finish chunk
finish = {
"id": session_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": engine.model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}],
}
yield push(finish).encode("utf-8")
finally:
# Mark finished and persist
sess.finished = True
if _DB_STORE is not None:
try:
_DB_STORE.mark_finished(session_id)
# Optionally GC older finished sessions
_DB_STORE.gc(SESSIONS_TTL_SECONDS)
except Exception:
pass
# Always send terminal [DONE]
yield b"data: [DONE]\n\n"
# Listener bookkeeping and optional auto-cancel if all disconnect
try:
sess.listeners = max(0, sess.listeners - 1)
if sess.listeners == 0 and CANCEL_AFTER_DISCONNECT_SECONDS > 0 and not sess.cancel_event.is_set():
def _later_cancel():
# If still no listeners, cancel
if sess.listeners == 0 and not sess.cancel_event.is_set():
sess.cancel_event.set()
sess.cancel_timer = threading.Timer(CANCEL_AFTER_DISCONNECT_SECONDS, _later_cancel)
sess.cancel_timer.daemon = True
sess.cancel_timer.start()
except Exception:
pass
# In-memory store GC
try:
_STORE.gc()
except Exception:
pass
headers = {
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
}
return StreamingResponse(sse_generator(), media_type="text/event-stream", headers=headers)
@app.post("/v1/cancel/{session_id}", tags=["chat"], response_model=CancelResponse, summary="Cancel a streaming session")
def cancel_session(session_id: str):
sess = _STORE.get(session_id)
if sess is not None:
try:
sess.cancel_event.set()
sess.finished = True
if _DB_STORE is not None:
_DB_STORE.mark_finished(session_id)
except Exception:
pass
return JSONResponse({"ok": True, "session_id": session_id})
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=PORT, reload=False) |