Spaces:
Paused
Paused
| # Copyright 2024 The Qwen Team and The HuggingFace Inc. team. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| """Tokenization classes for Qwen2.""" | |
| import json | |
| import os | |
| import unicodedata | |
| from functools import lru_cache | |
| from typing import Optional, Tuple | |
| import regex as re | |
| from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = { | |
| "vocab_file": "vocab.json", | |
| "merges_file": "merges.txt", | |
| } | |
| MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} | |
| PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode | |
| def bytes_to_unicode(): | |
| """ | |
| Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control | |
| characters the bpe code barfs on. | |
| The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab | |
| if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for | |
| decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup | |
| tables between utf-8 bytes and unicode strings. | |
| """ | |
| bs = ( | |
| list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
| ) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2**8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2**8 + n) | |
| n += 1 | |
| cs = [chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs | |
| def get_pairs(word): | |
| """ | |
| Return set of symbol pairs in a word. | |
| Word is represented as tuple of symbols (symbols being variable-length strings). | |
| """ | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| return pairs | |
| class Qwen2Tokenizer(PreTrainedTokenizer): | |
| """ | |
| Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. | |
| Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will | |
| be encoded differently whether it is at the beginning of the sentence (without space) or not: | |
| ```python | |
| >>> from transformers import Qwen2Tokenizer | |
| >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") | |
| >>> tokenizer("Hello world")["input_ids"] | |
| [9707, 1879] | |
| >>> tokenizer(" Hello world")["input_ids"] | |
| [21927, 1879] | |
| ``` | |
| This is expected. | |
| You should not use GPT2Tokenizer instead, because of the different pretokenization rules. | |
| This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
| this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| Path to the vocabulary file. | |
| merges_file (`str`): | |
| Path to the merges file. | |
| errors (`str`, *optional*, defaults to `"replace"`): | |
| Paradigm to follow when decoding bytes to UTF-8. See | |
| [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. | |
| unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| bos_token (`str`, *optional*): | |
| The beginning of sequence token. Not applicable for this tokenizer. | |
| eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
| The end of sequence token. | |
| pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
| Whether or not the model should cleanup the spaces that were added when splitting the input text during the | |
| tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. | |
| split_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not the special tokens should be split during the tokenization process. The default behavior is | |
| to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = | |
| ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', | |
| '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| model_input_names = ["input_ids", "attention_mask"] | |
| def __init__( | |
| self, | |
| vocab_file, | |
| merges_file, | |
| errors="replace", | |
| unk_token="<|endoftext|>", | |
| bos_token=None, | |
| eos_token="<|endoftext|>", | |
| pad_token="<|endoftext|>", | |
| clean_up_tokenization_spaces=False, | |
| split_special_tokens=False, | |
| **kwargs, | |
| ): | |
| # Qwen vocab does not contain control tokens; added tokens need to be special | |
| bos_token = ( | |
| AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
| if isinstance(bos_token, str) | |
| else bos_token | |
| ) | |
| eos_token = ( | |
| AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
| if isinstance(eos_token, str) | |
| else eos_token | |
| ) | |
| unk_token = ( | |
| AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
| if isinstance(unk_token, str) | |
| else unk_token | |
| ) | |
| pad_token = ( | |
| AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
| if isinstance(pad_token, str) | |
| else pad_token | |
| ) | |
| with open(vocab_file, encoding="utf-8") as vocab_handle: | |
| self.encoder = json.load(vocab_handle) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.errors = errors # how to handle errors in decoding | |
| self.byte_encoder = bytes_to_unicode() | |
| self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
| bpe_merges = [] | |
| with open(merges_file, encoding="utf-8") as merges_handle: | |
| for i, line in enumerate(merges_handle): | |
| line = line.strip() | |
| if (i == 0 and line.startswith("#version:")) or not line: | |
| continue | |
| bpe_merges.append(tuple(line.split())) | |
| self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
| # NOTE: the cache can grow without bound and will get really large for long running processes | |
| # (esp. for texts of language that do not use space between word, e.g. Chinese); technically | |
| # not a memory leak but appears as one. | |
| # GPT2Tokenizer has the same problem, so let's be consistent. | |
| self.cache = {} | |
| self.pat = re.compile(PRETOKENIZE_REGEX) | |
| if kwargs.get("add_prefix_space", False): | |
| logger.warning_once( | |
| f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." | |
| ) | |
| super().__init__( | |
| errors=errors, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| pad_token=pad_token, | |
| unk_token=unk_token, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| split_special_tokens=split_special_tokens, | |
| **kwargs, | |
| ) | |
| def vocab_size(self) -> int: | |
| return len(self.encoder) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab | |
| def get_vocab(self): | |
| return dict(self.encoder, **self.added_tokens_encoder) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token | |
| while True: | |
| bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| except ValueError: | |
| new_word.extend(word[i:]) | |
| break | |
| else: | |
| new_word.extend(word[i:j]) | |
| i = j | |
| if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
| new_word.append(first + second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = " ".join(word) | |
| self.cache[token] = word | |
| return word | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize | |
| def _tokenize(self, text): | |
| """Tokenize a string.""" | |
| bpe_tokens = [] | |
| for token in re.findall(self.pat, text): | |
| token = "".join( | |
| self.byte_encoder[b] for b in token.encode("utf-8") | |
| ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) | |
| bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) | |
| return bpe_tokens | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id | |
| def _convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| return self.decoder.get(index) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string | |
| def convert_tokens_to_string(self, tokens): | |
| """Converts a sequence of tokens (string) in a single string.""" | |
| text = "".join(tokens) | |
| text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) | |
| return text | |
| def decode( | |
| self, | |
| token_ids, | |
| skip_special_tokens: bool = False, | |
| clean_up_tokenization_spaces: Optional[bool] = False, | |
| spaces_between_special_tokens: bool = False, | |
| **kwargs, | |
| ) -> str: | |
| # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers | |
| # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer | |
| return super().decode( | |
| token_ids, | |
| skip_special_tokens=skip_special_tokens, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| spaces_between_special_tokens=spaces_between_special_tokens, | |
| **kwargs, | |
| ) | |
| # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| merge_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
| ) | |
| with open(vocab_file, "w", encoding="utf-8") as f: | |
| f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
| index = 0 | |
| with open(merge_file, "w", encoding="utf-8") as writer: | |
| writer.write("#version: 0.2\n") | |
| for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
| if index != token_index: | |
| logger.warning( | |
| f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." | |
| " Please check that the tokenizer is not corrupted!" | |
| ) | |
| index = token_index | |
| writer.write(" ".join(bpe_tokens) + "\n") | |
| index += 1 | |
| return vocab_file, merge_file | |
| def prepare_for_tokenization(self, text, **kwargs): | |
| text = unicodedata.normalize("NFC", text) | |
| return (text, kwargs) | |