Spaces:
Paused
Paused
| # Copyright 2024 The HuggingFace Inc. team. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| """Tokenization class for SigLIP model.""" | |
| import os | |
| import re | |
| import string | |
| import warnings | |
| from shutil import copyfile | |
| from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | |
| import sentencepiece as spm | |
| from transformers.convert_slow_tokenizer import import_protobuf | |
| from transformers.tokenization_utils import PreTrainedTokenizer | |
| from transformers.tokenization_utils_base import AddedToken | |
| if TYPE_CHECKING: | |
| from transformers.tokenization_utils_base import TextInput | |
| from transformers.utils import logging, requires_backends | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} | |
| SPIECE_UNDERLINE = "▁" | |
| class SiglipTokenizer(PreTrainedTokenizer): | |
| """ | |
| Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
| This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
| this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that | |
| contains the vocabulary necessary to instantiate a tokenizer. | |
| eos_token (`str`, *optional*, defaults to `"</s>"`): | |
| The end of sequence token. | |
| unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| pad_token (`str`, *optional*, defaults to `"</s>"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| additional_special_tokens (`List[str]`, *optional*): | |
| Additional special tokens used by the tokenizer. | |
| sp_model_kwargs (`dict`, *optional*): | |
| Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
| SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
| to set: | |
| - `enable_sampling`: Enable subword regularization. | |
| - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
| - `nbest_size = {0,1}`: No sampling is performed. | |
| - `nbest_size > 1`: samples from the nbest_size results. | |
| - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
| using forward-filtering-and-backward-sampling algorithm. | |
| - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
| BPE-dropout. | |
| model_max_length (`int`, *optional*, defaults to 64): | |
| The maximum length (in number of tokens) for model inputs. | |
| do_lower_case (`bool`, *optional*, defaults to `True`): | |
| Whether or not to lowercase the input when tokenizing. | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| model_input_names = ["input_ids", "attention_mask"] | |
| def __init__( | |
| self, | |
| vocab_file, | |
| eos_token="</s>", | |
| unk_token="<unk>", | |
| pad_token="</s>", | |
| additional_special_tokens=None, | |
| sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
| model_max_length=64, | |
| do_lower_case=True, | |
| **kwargs, | |
| ) -> None: | |
| requires_backends(self, "protobuf") | |
| pad_token = ( | |
| AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
| if isinstance(pad_token, str) | |
| else pad_token | |
| ) | |
| unk_token = ( | |
| AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
| if isinstance(unk_token, str) | |
| else unk_token | |
| ) | |
| eos_token = ( | |
| AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) | |
| if isinstance(eos_token, str) | |
| else eos_token | |
| ) | |
| self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
| self.do_lower_case = do_lower_case | |
| self.vocab_file = vocab_file | |
| self.sp_model = self.get_spm_processor() | |
| self.vocab_file = vocab_file | |
| super().__init__( | |
| eos_token=eos_token, | |
| unk_token=unk_token, | |
| pad_token=pad_token, | |
| additional_special_tokens=additional_special_tokens, | |
| sp_model_kwargs=self.sp_model_kwargs, | |
| model_max_length=model_max_length, | |
| do_lower_case=do_lower_case, | |
| **kwargs, | |
| ) | |
| def get_spm_processor(self): | |
| tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
| with open(self.vocab_file, "rb") as f: | |
| sp_model = f.read() | |
| model_pb2 = import_protobuf() | |
| model = model_pb2.ModelProto.FromString(sp_model) | |
| normalizer_spec = model_pb2.NormalizerSpec() | |
| normalizer_spec.add_dummy_prefix = False | |
| model.normalizer_spec.MergeFrom(normalizer_spec) | |
| sp_model = model.SerializeToString() | |
| tokenizer.LoadFromSerializedProto(sp_model) | |
| return tokenizer | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size | |
| def vocab_size(self): | |
| return self.sp_model.get_piece_size() | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab | |
| def get_vocab(self): | |
| vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
| vocab.update(self.added_tokens_encoder) | |
| return vocab | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask | |
| def get_special_tokens_mask( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
| ) -> List[int]: | |
| """ | |
| Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
| special tokens using the tokenizer `prepare_for_model` method. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not the token list is already formatted with special tokens for the model. | |
| Returns: | |
| `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
| """ | |
| if already_has_special_tokens: | |
| return super().get_special_tokens_mask( | |
| token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
| ) | |
| # normal case: some special tokens | |
| if token_ids_1 is None: | |
| return ([0] * len(token_ids_0)) + [1] | |
| return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present | |
| def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: | |
| """Do not add eos again if user already added it.""" | |
| if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: | |
| warnings.warn( | |
| f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" | |
| " eos tokens being added." | |
| ) | |
| return token_ids | |
| else: | |
| return token_ids + [self.eos_token_id] | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences | |
| def create_token_type_ids_from_sequences( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make | |
| use of token type ids, therefore a list of zeros is returned. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of zeros. | |
| """ | |
| eos = [self.eos_token_id] | |
| if token_ids_1 is None: | |
| return len(token_ids_0 + eos) * [0] | |
| return len(token_ids_0 + eos + token_ids_1 + eos) * [0] | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. A sequence has the following format: | |
| - single sequence: `X </s>` | |
| - pair of sequences: `A </s> B </s>` | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
| """ | |
| token_ids_0 = self._add_eos_if_not_present(token_ids_0) | |
| if token_ids_1 is None: | |
| return token_ids_0 | |
| else: | |
| token_ids_1 = self._add_eos_if_not_present(token_ids_1) | |
| return token_ids_0 + token_ids_1 | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ | |
| def __getstate__(self): | |
| state = self.__dict__.copy() | |
| state["sp_model"] = None | |
| return state | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__ | |
| def __setstate__(self, d): | |
| self.__dict__ = d | |
| # for backward compatibility | |
| if not hasattr(self, "sp_model_kwargs"): | |
| self.sp_model_kwargs = {} | |
| self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
| self.sp_model.Load(self.vocab_file) | |
| def remove_punctuation(self, text: str) -> str: | |
| return text.translate(str.maketrans("", "", string.punctuation)) | |
| # source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 | |
| def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): | |
| """Returns canonicalized `text` (puncuation removed). | |
| Args: | |
| text (`str`): | |
| String to be canonicalized. | |
| keep_punctuation_exact_string (`str`, *optional*): | |
| If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' | |
| (but will still remove '{' and '}' that appear separately). | |
| """ | |
| if keep_punctuation_exact_string: | |
| text = keep_punctuation_exact_string.join( | |
| self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) | |
| ) | |
| else: | |
| text = self.remove_punctuation(text) | |
| text = re.sub(r"\s+", " ", text) | |
| text = text.strip() | |
| return text | |
| def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: | |
| """ | |
| Converts a string to a list of tokens. | |
| """ | |
| tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) | |
| if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: | |
| tokens = tokens[1:] | |
| return tokens | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length | |
| def unk_token_length(self): | |
| return len(self.sp_model.encode(str(self.unk_token))) | |
| def _tokenize(self, text, **kwargs): | |
| """ | |
| Returns a tokenized string. | |
| We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any | |
| SPIECE_UNDERLINE. | |
| For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. | |
| Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. | |
| `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. | |
| """ | |
| text = self.canonicalize_text(text, keep_punctuation_exact_string=None) | |
| tokens = self.sp_model.encode(text, out_type=str) | |
| # 1. Encode string + prefix ex: "<unk> Hey" | |
| tokens = self.sp_model.encode(self.unk_token + text, out_type=str) | |
| # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] | |
| return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id | |
| def _convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| return self.sp_model.piece_to_id(token) | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| token = self.sp_model.IdToPiece(index) | |
| return token | |
| def convert_tokens_to_string(self, tokens): | |
| """Converts a sequence of tokens (string) in a single string.""" | |
| current_sub_tokens = [] | |
| out_string = "" | |
| prev_is_special = False | |
| for token in tokens: | |
| # make sure that special tokens are not decoded using sentencepiece model | |
| if token in self.all_special_tokens: | |
| if not prev_is_special: | |
| out_string += " " | |
| out_string += self.sp_model.decode(current_sub_tokens) + token | |
| prev_is_special = True | |
| current_sub_tokens = [] | |
| else: | |
| current_sub_tokens.append(token) | |
| prev_is_special = False | |
| out_string += self.sp_model.decode(current_sub_tokens) | |
| return out_string.strip() | |
| # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| out_vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
| copyfile(self.vocab_file, out_vocab_file) | |
| elif not os.path.isfile(self.vocab_file): | |
| with open(out_vocab_file, "wb") as fi: | |
| content_spiece_model = self.sp_model.serialized_model_proto() | |
| fi.write(content_spiece_model) | |
| return (out_vocab_file,) | |