Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,17 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
-
import uuid
|
| 3 |
-
import os
|
| 4 |
import math
|
| 5 |
import random
|
| 6 |
import spaces
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
-
from diffusers import
|
|
|
|
|
|
|
| 11 |
from huggingface_hub import InferenceClient
|
| 12 |
|
|
|
|
| 13 |
help_text = """
|
| 14 |
To optimize image editing results:
|
| 15 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
|
@@ -20,14 +22,38 @@ To optimize image editing results:
|
|
| 20 |
- For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
|
| 21 |
"""
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 26 |
|
| 27 |
if not torch.cuda.is_available():
|
| 28 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
| 29 |
-
|
| 30 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 31 |
|
| 32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
|
@@ -45,8 +71,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 45 |
seed = random.randint(0, 999999)
|
| 46 |
return seed
|
| 47 |
|
| 48 |
-
pipe2 = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
|
| 49 |
-
|
| 50 |
@spaces.GPU(duration=30, queue=False)
|
| 51 |
def king(type = "Image Editing",
|
| 52 |
input_image = None,
|
|
@@ -86,14 +110,14 @@ def king(type = "Image Editing",
|
|
| 86 |
image_cfg_scale = image_cfg_scale
|
| 87 |
input_image = input_image
|
| 88 |
|
| 89 |
-
steps=steps*
|
| 90 |
generator = torch.manual_seed(seed)
|
| 91 |
-
output_image =
|
| 92 |
instruction, image=input_image,
|
| 93 |
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
|
| 94 |
num_inference_steps=steps, generator=generator).images[0]
|
| 95 |
return seed, output_image
|
| 96 |
-
|
| 97 |
def response(instruction, input_image=None):
|
| 98 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 99 |
|
|
@@ -131,28 +155,28 @@ def get_example():
|
|
| 131 |
case = [
|
| 132 |
[
|
| 133 |
"Image Generation",
|
| 134 |
-
None,
|
| 135 |
"A Super Car",
|
|
|
|
| 136 |
],
|
| 137 |
[
|
| 138 |
"Image Editing",
|
| 139 |
-
"./supercar.png",
|
| 140 |
"make it red",
|
|
|
|
| 141 |
],
|
| 142 |
[
|
| 143 |
"Image Editing",
|
| 144 |
-
"./red_car.png",
|
| 145 |
"add some snow",
|
|
|
|
| 146 |
],
|
| 147 |
[
|
| 148 |
"Image Generation",
|
| 149 |
-
None,
|
| 150 |
"Ironman flying in front of Ststue of liberty",
|
|
|
|
| 151 |
],
|
| 152 |
[
|
| 153 |
"Image Generation",
|
| 154 |
-
None,
|
| 155 |
"Beautiful Eiffel Tower at Night",
|
|
|
|
| 156 |
],
|
| 157 |
]
|
| 158 |
return case
|
|
@@ -195,7 +219,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 195 |
|
| 196 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
| 197 |
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
| 199 |
fn=king,
|
| 200 |
inputs=[type,
|
| 201 |
input_image,
|
|
|
|
| 1 |
from __future__ import annotations
|
|
|
|
|
|
|
| 2 |
import math
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
+
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
| 10 |
+
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
from huggingface_hub import InferenceClient
|
| 13 |
|
| 14 |
+
|
| 15 |
help_text = """
|
| 16 |
To optimize image editing results:
|
| 17 |
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
|
|
|
|
| 22 |
- For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
|
| 23 |
"""
|
| 24 |
|
| 25 |
+
def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
| 26 |
+
self.num_inference_steps = num_inference_steps
|
| 27 |
+
|
| 28 |
+
ramp = np.linspace(0, 1, self.num_inference_steps)
|
| 29 |
+
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
|
| 30 |
+
|
| 31 |
+
sigmas = (sigmas).to(dtype=torch.float32, device=device)
|
| 32 |
+
self.timesteps = self.precondition_noise(sigmas)
|
| 33 |
+
|
| 34 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
| 35 |
+
self._step_index = None
|
| 36 |
+
self._begin_index = None
|
| 37 |
+
self.sigmas = self.sigmas.to("cpu")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
| 41 |
+
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
|
| 42 |
+
|
| 43 |
+
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
| 44 |
+
|
| 45 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 46 |
+
|
| 47 |
+
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
| 48 |
+
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
| 49 |
+
)
|
| 50 |
+
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
|
| 51 |
+
pipe_edit.to("cuda")
|
| 52 |
|
| 53 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 54 |
|
| 55 |
if not torch.cuda.is_available():
|
| 56 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
|
|
|
|
|
|
| 57 |
|
| 58 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 59 |
|
|
|
|
| 71 |
seed = random.randint(0, 999999)
|
| 72 |
return seed
|
| 73 |
|
|
|
|
|
|
|
| 74 |
@spaces.GPU(duration=30, queue=False)
|
| 75 |
def king(type = "Image Editing",
|
| 76 |
input_image = None,
|
|
|
|
| 110 |
image_cfg_scale = image_cfg_scale
|
| 111 |
input_image = input_image
|
| 112 |
|
| 113 |
+
steps=steps*3
|
| 114 |
generator = torch.manual_seed(seed)
|
| 115 |
+
output_image = pipe_edit(
|
| 116 |
instruction, image=input_image,
|
| 117 |
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
|
| 118 |
num_inference_steps=steps, generator=generator).images[0]
|
| 119 |
return seed, output_image
|
| 120 |
+
|
| 121 |
def response(instruction, input_image=None):
|
| 122 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 123 |
|
|
|
|
| 155 |
case = [
|
| 156 |
[
|
| 157 |
"Image Generation",
|
|
|
|
| 158 |
"A Super Car",
|
| 159 |
+
None,
|
| 160 |
],
|
| 161 |
[
|
| 162 |
"Image Editing",
|
|
|
|
| 163 |
"make it red",
|
| 164 |
+
"./supercar.png",
|
| 165 |
],
|
| 166 |
[
|
| 167 |
"Image Editing",
|
|
|
|
| 168 |
"add some snow",
|
| 169 |
+
"./red_car.png",
|
| 170 |
],
|
| 171 |
[
|
| 172 |
"Image Generation",
|
|
|
|
| 173 |
"Ironman flying in front of Ststue of liberty",
|
| 174 |
+
None,
|
| 175 |
],
|
| 176 |
[
|
| 177 |
"Image Generation",
|
|
|
|
| 178 |
"Beautiful Eiffel Tower at Night",
|
| 179 |
+
None,
|
| 180 |
],
|
| 181 |
]
|
| 182 |
return case
|
|
|
|
| 219 |
|
| 220 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
| 221 |
|
| 222 |
+
gr.on(triggers=[
|
| 223 |
+
generate_button.click,
|
| 224 |
+
instruction.submit
|
| 225 |
+
],
|
| 226 |
fn=king,
|
| 227 |
inputs=[type,
|
| 228 |
input_image,
|