Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,15 +10,13 @@ from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipelin
|
|
| 10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
| 11 |
|
| 12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 13 |
-
pipe = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, vae=vae)
|
| 14 |
-
pipe.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
| 15 |
-
pipe.set_adapters("lora")
|
| 16 |
-
pipe.to("cuda")
|
| 17 |
|
| 18 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
| 19 |
refiner.to("cuda")
|
| 20 |
|
| 21 |
-
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16)
|
|
|
|
|
|
|
| 22 |
pipe_fast.to("cuda")
|
| 23 |
|
| 24 |
help_text = """
|
|
@@ -100,33 +98,33 @@ def king(type ,
|
|
| 100 |
steps=int(steps/2.5)
|
| 101 |
guidance_scale2=(guidance_scale/3)
|
| 102 |
|
| 103 |
-
|
| 104 |
guidance_scale = guidance_scale2,
|
| 105 |
num_inference_steps = steps,
|
| 106 |
width = width, height = height,
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
).images
|
| 110 |
else:
|
| 111 |
if enhance_prompt:
|
| 112 |
print(f"BEFORE: {instruction} ")
|
| 113 |
instruction = promptifier(instruction)
|
| 114 |
print(f"AFTER: {instruction} ")
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
negative_prompt=negative_prompt,
|
| 117 |
-
guidance_scale =
|
| 118 |
num_inference_steps = steps,
|
| 119 |
width = width, height = height,
|
| 120 |
-
use_resolution_binning = True,
|
| 121 |
generator = generator, output_type="latent",
|
| 122 |
).images
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
return seed, refine
|
| 131 |
|
| 132 |
client = InferenceClient()
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
| 11 |
|
| 12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
| 15 |
refiner.to("cuda")
|
| 16 |
|
| 17 |
+
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae)
|
| 18 |
+
pipe_fast.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
| 19 |
+
pipe_fast.set_adapters("lora")
|
| 20 |
pipe_fast.to("cuda")
|
| 21 |
|
| 22 |
help_text = """
|
|
|
|
| 98 |
steps=int(steps/2.5)
|
| 99 |
guidance_scale2=(guidance_scale/3)
|
| 100 |
|
| 101 |
+
refine = pipe_fast( prompt = instruction,
|
| 102 |
guidance_scale = guidance_scale2,
|
| 103 |
num_inference_steps = steps,
|
| 104 |
width = width, height = height,
|
| 105 |
+
generator = generator,
|
| 106 |
+
).images[0]
|
|
|
|
| 107 |
else:
|
| 108 |
if enhance_prompt:
|
| 109 |
print(f"BEFORE: {instruction} ")
|
| 110 |
instruction = promptifier(instruction)
|
| 111 |
print(f"AFTER: {instruction} ")
|
| 112 |
+
guidance_scale2=(guidance_scale/2)
|
| 113 |
+
|
| 114 |
+
image = pipe_fast( prompt = instruction,
|
| 115 |
negative_prompt=negative_prompt,
|
| 116 |
+
guidance_scale = guidance_scale2,
|
| 117 |
num_inference_steps = steps,
|
| 118 |
width = width, height = height,
|
|
|
|
| 119 |
generator = generator, output_type="latent",
|
| 120 |
).images
|
| 121 |
|
| 122 |
+
refine = refiner( prompt=instruction,
|
| 123 |
+
negative_prompt = negative_prompt,
|
| 124 |
+
guidance_scale = guidance_scale,
|
| 125 |
+
num_inference_steps= steps,
|
| 126 |
+
image=image, generator=generator,
|
| 127 |
+
).images[0]
|
| 128 |
return seed, refine
|
| 129 |
|
| 130 |
client = InferenceClient()
|