Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,53 @@
|
|
| 1 |
-
|
| 2 |
-
import spaces
|
| 3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 4 |
-
from qwen_vl_utils import process_vision_info
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import subprocess
|
| 8 |
-
import numpy as np
|
| 9 |
import os
|
| 10 |
-
from
|
|
|
|
|
|
|
| 11 |
import uuid
|
| 12 |
import io
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
image_extensions = Image.registered_extensions()
|
| 26 |
-
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "
|
| 27 |
|
| 28 |
|
| 29 |
def identify_and_save_blob(blob_path):
|
| 30 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 31 |
try:
|
| 32 |
with open(blob_path, 'rb') as file:
|
| 33 |
blob_content = file.read()
|
| 34 |
-
|
| 35 |
# Try to identify if it's an image
|
| 36 |
try:
|
| 37 |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
|
@@ -39,106 +55,184 @@ def identify_and_save_blob(blob_path):
|
|
| 39 |
media_type = "image"
|
| 40 |
except (IOError, SyntaxError):
|
| 41 |
# If it's not a valid image, assume it's a video
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
media_type = "video"
|
| 44 |
-
|
| 45 |
# Create a unique filename
|
| 46 |
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
| 47 |
with open(filename, "wb") as f:
|
| 48 |
f.write(blob_content)
|
| 49 |
-
|
| 50 |
return filename, media_type
|
| 51 |
-
|
| 52 |
except FileNotFoundError:
|
| 53 |
raise ValueError(f"The file {blob_path} was not found.")
|
| 54 |
except Exception as e:
|
| 55 |
raise ValueError(f"An error occurred while processing the file: {e}")
|
| 56 |
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
@spaces.GPU
|
| 59 |
-
def
|
| 60 |
-
if
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
media_type = "image"
|
| 64 |
-
elif
|
|
|
|
| 65 |
media_type = "video"
|
| 66 |
else:
|
|
|
|
| 67 |
try:
|
| 68 |
-
media_path, media_type = identify_and_save_blob(
|
| 69 |
-
print(
|
| 70 |
except Exception as e:
|
| 71 |
-
print(e)
|
| 72 |
-
raise
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
{
|
| 81 |
-
"role": "user",
|
| 82 |
-
"content": [
|
| 83 |
-
{
|
| 84 |
-
"type": media_type,
|
| 85 |
-
media_type: media_path,
|
| 86 |
-
**({"fps": 8.0} if media_type == "video" else {}),
|
| 87 |
-
},
|
| 88 |
-
{"type": "text", "text": text_input},
|
| 89 |
-
],
|
| 90 |
-
}
|
| 91 |
-
]
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
text = processor.apply_chat_template(
|
| 94 |
messages, tokenize=False, add_generation_prompt=True
|
| 95 |
)
|
| 96 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 97 |
inputs = processor(
|
| 98 |
text=[text],
|
| 99 |
images=image_inputs,
|
| 100 |
videos=video_inputs,
|
| 101 |
padding=True,
|
| 102 |
return_tensors="pt",
|
| 103 |
-
).to(
|
| 104 |
|
|
|
|
| 105 |
streamer = TextIteratorStreamer(
|
| 106 |
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
| 107 |
)
|
| 108 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 109 |
|
|
|
|
| 110 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 111 |
thread.start()
|
| 112 |
|
| 113 |
buffer = ""
|
| 114 |
for new_text in streamer:
|
| 115 |
buffer += new_text
|
| 116 |
-
yield buffer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
css = """
|
| 119 |
#output {
|
| 120 |
-
height: 500px;
|
| 121 |
-
overflow: auto;
|
| 122 |
-
border: 1px solid #ccc;
|
| 123 |
}
|
| 124 |
"""
|
| 125 |
|
| 126 |
with gr.Blocks(css=css) as demo:
|
| 127 |
gr.Markdown(DESCRIPTION)
|
| 128 |
-
|
| 129 |
-
with gr.Tab(label="Image/Video Input"):
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column():
|
|
|
|
| 132 |
input_media = gr.File(
|
| 133 |
-
label="Upload Image or Video
|
|
|
|
| 134 |
)
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
| 136 |
submit_btn = gr.Button(value="Submit")
|
| 137 |
with gr.Column():
|
| 138 |
-
output_text = gr.Textbox(label="Output Text")
|
|
|
|
| 139 |
|
| 140 |
-
submit_btn.click(
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
demo.launch(debug=True)
|
|
|
|
| 1 |
+
# Standard library imports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import subprocess
|
| 5 |
+
import time
|
| 6 |
import uuid
|
| 7 |
import io
|
| 8 |
+
from threading import Thread
|
| 9 |
|
| 10 |
+
# Third-party imports
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import accelerate
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import spaces
|
| 17 |
+
from transformers import (
|
| 18 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 19 |
+
AutoTokenizer,
|
| 20 |
+
AutoProcessor,
|
| 21 |
+
TextIteratorStreamer
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Local imports
|
| 25 |
+
from qwen_vl_utils import process_vision_info
|
| 26 |
|
| 27 |
+
# Set device agnostic code
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
device = "cuda"
|
| 30 |
+
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
|
| 31 |
+
device = "mps"
|
| 32 |
+
else:
|
| 33 |
+
device = "cpu"
|
| 34 |
|
| 35 |
+
print(f"[INFO] Using device: {device}")
|
| 36 |
+
|
| 37 |
+
# Define supported media extensions
|
| 38 |
image_extensions = Image.registered_extensions()
|
| 39 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "gif", "webm", "m4v", "3gp") # Removed .wav as it's audio, not video
|
| 40 |
|
| 41 |
|
| 42 |
def identify_and_save_blob(blob_path):
|
| 43 |
+
"""
|
| 44 |
+
Identifies if the blob is an image or video and saves it with a unique name.
|
| 45 |
+
Returns the saved file path and its media type ("image" or "video").
|
| 46 |
+
"""
|
| 47 |
try:
|
| 48 |
with open(blob_path, 'rb') as file:
|
| 49 |
blob_content = file.read()
|
| 50 |
+
|
| 51 |
# Try to identify if it's an image
|
| 52 |
try:
|
| 53 |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
|
|
|
| 55 |
media_type = "image"
|
| 56 |
except (IOError, SyntaxError):
|
| 57 |
# If it's not a valid image, assume it's a video
|
| 58 |
+
# We can try to get the actual extension from the blob_path,
|
| 59 |
+
# but for unknown types, MP4 is a good default.
|
| 60 |
+
_, ext = os.path.splitext(blob_path)
|
| 61 |
+
if ext.lower() in video_extensions:
|
| 62 |
+
extension = ext.lower()
|
| 63 |
+
else:
|
| 64 |
+
extension = ".mp4" # Default to MP4 for saving
|
| 65 |
media_type = "video"
|
| 66 |
+
|
| 67 |
# Create a unique filename
|
| 68 |
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
| 69 |
with open(filename, "wb") as f:
|
| 70 |
f.write(blob_content)
|
| 71 |
+
|
| 72 |
return filename, media_type
|
| 73 |
+
|
| 74 |
except FileNotFoundError:
|
| 75 |
raise ValueError(f"The file {blob_path} was not found.")
|
| 76 |
except Exception as e:
|
| 77 |
raise ValueError(f"An error occurred while processing the file: {e}")
|
| 78 |
|
| 79 |
|
| 80 |
+
# Model and Processor Loading
|
| 81 |
+
# Define models and processors as dictionaries for easy selection
|
| 82 |
+
models = {
|
| 83 |
+
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct",
|
| 84 |
+
trust_remote_code=True,
|
| 85 |
+
torch_dtype="auto",
|
| 86 |
+
device_map="auto").eval(),
|
| 87 |
+
"Qwen/Qwen2.5-VL-3B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct",
|
| 88 |
+
trust_remote_code=True,
|
| 89 |
+
torch_dtype="auto",
|
| 90 |
+
device_map="auto").eval()
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
processors = {
|
| 94 |
+
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True),
|
| 95 |
+
"Qwen/Qwen2.5-VL-3B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", trust_remote_code=True)
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
DESCRIPTION = "[Qwen2.5-VL Demo](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5)"
|
| 99 |
+
|
| 100 |
@spaces.GPU
|
| 101 |
+
def run_example(media_input, text_input=None, model_id=None):
|
| 102 |
+
if media_input is None:
|
| 103 |
+
raise gr.Error("No media provided. Please upload an image or video before submitting.")
|
| 104 |
+
if model_id is None:
|
| 105 |
+
raise gr.Error("No model selected. Please select a model.")
|
| 106 |
+
|
| 107 |
+
start_time = time.time()
|
| 108 |
+
|
| 109 |
+
media_path = None
|
| 110 |
+
media_type = None
|
| 111 |
+
|
| 112 |
+
# Determine if it's an image (numpy array from gr.Image) or a file (from gr.File)
|
| 113 |
+
if isinstance(media_input, np.ndarray): # This comes from gr.Image
|
| 114 |
+
img = Image.fromarray(np.uint8(media_input))
|
| 115 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 116 |
+
filename = f"image_{timestamp}.png"
|
| 117 |
+
img.save(filename)
|
| 118 |
+
media_path = os.path.abspath(filename)
|
| 119 |
+
media_type = "image"
|
| 120 |
+
elif isinstance(media_input, str): # This comes from gr.File (filepath)
|
| 121 |
+
path = media_input
|
| 122 |
+
_, ext = os.path.splitext(path)
|
| 123 |
+
ext = ext.lower()
|
| 124 |
+
|
| 125 |
+
if ext in image_extensions:
|
| 126 |
+
media_path = path
|
| 127 |
media_type = "image"
|
| 128 |
+
elif ext in video_extensions:
|
| 129 |
+
media_path = path
|
| 130 |
media_type = "video"
|
| 131 |
else:
|
| 132 |
+
# For blobs or unknown file types, try to identify
|
| 133 |
try:
|
| 134 |
+
media_path, media_type = identify_and_save_blob(path)
|
| 135 |
+
print(f"Identified blob as: {media_type}, saved to: {media_path}")
|
| 136 |
except Exception as e:
|
| 137 |
+
print(f"Error identifying blob: {e}")
|
| 138 |
+
raise gr.Error("Unsupported media type. Please upload an image (PNG, JPG, etc.) or a video (MP4, AVI, etc.).")
|
| 139 |
+
else:
|
| 140 |
+
raise gr.Error("Unsupported input type for media. Please upload an image or video.")
|
| 141 |
+
|
| 142 |
+
print(f"[INFO] Processing {media_type} from {media_path}")
|
| 143 |
+
|
| 144 |
+
model = models[model_id]
|
| 145 |
+
processor = processors[model_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# Construct messages list based on media type
|
| 148 |
+
content_list = []
|
| 149 |
+
if media_type == "image":
|
| 150 |
+
content_list.append({"type": "image", "image": media_path})
|
| 151 |
+
elif media_type == "video":
|
| 152 |
+
content_list.append({"type": "video", "video": media_path, "fps": 8.0}) # Qwen2.5-VL often uses 8fps
|
| 153 |
+
|
| 154 |
+
if text_input:
|
| 155 |
+
content_list.append({"type": "text", "text": text_input})
|
| 156 |
+
else:
|
| 157 |
+
# Default prompt if no text_input is provided
|
| 158 |
+
content_list.append({"type": "text", "text": "What is in this image/video?"})
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
messages = [{"role": "user", "content": content_list}]
|
| 162 |
+
|
| 163 |
+
# Preparation for inference
|
| 164 |
text = processor.apply_chat_template(
|
| 165 |
messages, tokenize=False, add_generation_prompt=True
|
| 166 |
)
|
| 167 |
+
image_inputs, video_inputs = process_vision_info(messages) # This utility handles both image and video info
|
| 168 |
inputs = processor(
|
| 169 |
text=[text],
|
| 170 |
images=image_inputs,
|
| 171 |
videos=video_inputs,
|
| 172 |
padding=True,
|
| 173 |
return_tensors="pt",
|
| 174 |
+
).to(device)
|
| 175 |
|
| 176 |
+
# Inference: Generation of the output using streaming
|
| 177 |
streamer = TextIteratorStreamer(
|
| 178 |
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
| 179 |
)
|
| 180 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 181 |
|
| 182 |
+
# Start generation in a separate thread to allow streaming
|
| 183 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 184 |
thread.start()
|
| 185 |
|
| 186 |
buffer = ""
|
| 187 |
for new_text in streamer:
|
| 188 |
buffer += new_text
|
| 189 |
+
yield buffer, None # Yield partial text and None for time until full generation
|
| 190 |
+
# Clean up the temporary file after it's processed (optional, depends on use case)
|
| 191 |
+
# if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
|
| 192 |
+
# os.remove(media_path)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
end_time = time.time()
|
| 196 |
+
total_time = round(end_time - start_time, 2)
|
| 197 |
+
|
| 198 |
+
# Final yield with total time
|
| 199 |
+
yield buffer, f"{total_time} seconds"
|
| 200 |
+
|
| 201 |
+
# Clean up the temporary file after it's fully processed
|
| 202 |
+
if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
|
| 203 |
+
os.remove(media_path)
|
| 204 |
+
print(f"[INFO] Cleaned up temporary file: {media_path}")
|
| 205 |
+
|
| 206 |
|
| 207 |
css = """
|
| 208 |
#output {
|
| 209 |
+
height: 500px;
|
| 210 |
+
overflow: auto;
|
| 211 |
+
border: 1px solid #ccc;
|
| 212 |
}
|
| 213 |
"""
|
| 214 |
|
| 215 |
with gr.Blocks(css=css) as demo:
|
| 216 |
gr.Markdown(DESCRIPTION)
|
| 217 |
+
with gr.Tab(label="Qwen2.5-VL Input"):
|
|
|
|
| 218 |
with gr.Row():
|
| 219 |
with gr.Column():
|
| 220 |
+
# Change input to gr.File to accept both image and video
|
| 221 |
input_media = gr.File(
|
| 222 |
+
label="Upload Image or Video (JPG, PNG, MP4, AVI, etc.)",
|
| 223 |
+
type="filepath" # Use 'filepath' to get the path to the temp file
|
| 224 |
)
|
| 225 |
+
model_selector = gr.Dropdown(choices=list(models.keys()),
|
| 226 |
+
label="Model",
|
| 227 |
+
value="Qwen/Qwen2.5-VL-7B-Instruct")
|
| 228 |
+
text_input = gr.Textbox(label="Text Prompt")
|
| 229 |
submit_btn = gr.Button(value="Submit")
|
| 230 |
with gr.Column():
|
| 231 |
+
output_text = gr.Textbox(label="Output Text", interactive=False)
|
| 232 |
+
time_taken = gr.Textbox(label="Time taken for processing + inference", interactive=False)
|
| 233 |
|
| 234 |
+
submit_btn.click(run_example,
|
| 235 |
+
[input_media, text_input, model_selector],
|
| 236 |
+
[output_text, time_taken]) # Ensure output components match yield order
|
| 237 |
|
| 238 |
demo.launch(debug=True)
|