Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import spaces | |
| import torch | |
| import gradio as gr | |
| import tempfile | |
| import os | |
| import uuid | |
| import scipy.io.wavfile | |
| import time | |
| import numpy as np | |
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline | |
| import subprocess | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 | |
| MODEL_NAME = "openai/whisper-large-v3-turbo" | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2" | |
| ) | |
| model.to(device) | |
| processor = AutoProcessor.from_pretrained(MODEL_NAME) | |
| tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME) | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=model, | |
| tokenizer=tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| chunk_length_s=10, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| ) | |
| def stream_transcribe(stream, new_chunk): | |
| start_time = time.time() | |
| try: | |
| sr, y = new_chunk | |
| # Convert to mono if stereo | |
| if y.ndim > 1: | |
| y = y.mean(axis=1) | |
| y = y.astype(np.float32) | |
| y /= np.max(np.abs(y)) | |
| if stream is not None: | |
| stream = np.concatenate([stream, y]) | |
| else: | |
| stream = y | |
| transcription = pipe({"sampling_rate": sr, "raw": stream})["text"] | |
| end_time = time.time() | |
| latency = end_time - start_time | |
| return stream, transcription, f"{latency:.2f}" | |
| except Exception as e: | |
| print(f"Error during Transcription: {e}") | |
| return stream, e, "Error" | |
| def transcribe(inputs, previous_transcription): | |
| start_time = time.time() | |
| try: | |
| filename = f"{uuid.uuid4().hex}.wav" | |
| sample_rate, audio_data = inputs | |
| scipy.io.wavfile.write(filename, sample_rate, audio_data) | |
| transcription = pipe(filename)["text"] | |
| previous_transcription += transcription | |
| end_time = time.time() | |
| latency = end_time - start_time | |
| return previous_transcription, f"{latency:.2f}" | |
| except Exception as e: | |
| print(f"Error during Transcription: {e}") | |
| return previous_transcription, "Error" | |
| def translate_and_transcribe(inputs, previous_transcription, target_language): | |
| start_time = time.time() | |
| try: | |
| filename = f"{uuid.uuid4().hex}.wav" | |
| sample_rate, audio_data = inputs | |
| scipy.io.wavfile.write(filename, sample_rate, audio_data) | |
| translation = pipe(filename, generate_kwargs={"task": "translate", "language": target_language} )["text"] | |
| previous_transcription += translation | |
| end_time = time.time() | |
| latency = end_time - start_time | |
| return previous_transcription, f"{latency:.2f}" | |
| except Exception as e: | |
| print(f"Error during Translation and Transcription: {e}") | |
| return previous_transcription, "Error" | |
| def clear(): | |
| return "" | |
| def clear_state(): | |
| return None | |
| with gr.Blocks() as microphone: | |
| with gr.Column(): | |
| gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
| with gr.Row(): | |
| input_audio_microphone = gr.Audio(streaming=True) | |
| output = gr.Textbox(label="Transcription", value="") | |
| latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
| with gr.Row(): | |
| clear_button = gr.Button("Clear Output") | |
| state = gr.State() | |
| input_audio_microphone.stream(stream_transcribe, [state, input_audio_microphone], [state, output, latency_textbox], time_limit=30, stream_every=2, concurrency_limit=None) | |
| clear_button.click(clear_state, outputs=[state]).then(clear, outputs=[output]) | |
| with gr.Blocks() as file: | |
| with gr.Column(): | |
| gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
| with gr.Row(): | |
| input_audio_microphone = gr.Audio(sources="upload", type="numpy") | |
| output = gr.Textbox(label="Transcription", value="") | |
| latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
| with gr.Row(): | |
| submit_button = gr.Button("Submit") | |
| clear_button = gr.Button("Clear Output") | |
| submit_button.click(transcribe, [input_audio_microphone, output], [output, latency_textbox], concurrency_limit=None) | |
| clear_button.click(clear, outputs=[output]) | |
| # with gr.Blocks() as translate: | |
| # with gr.Column(): | |
| # gr.Markdown(f"# Realtime Whisper Large V3 Turbo (Translation): \n Transcribe and Translate Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
| # with gr.Row(): | |
| # input_audio_microphone = gr.Audio(streaming=True) | |
| # output = gr.Textbox(label="Transcription and Translation", value="") | |
| # latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
| # target_language_dropdown = gr.Dropdown( | |
| # choices=["english", "french", "hindi", "spanish", "russian"], | |
| # label="Target Language", | |
| # value="<|es|>" | |
| # ) | |
| # with gr.Row(): | |
| # clear_button = gr.Button("Clear Output") | |
| # input_audio_microphone.stream( | |
| # translate_and_transcribe, | |
| # [input_audio_microphone, output, target_language_dropdown], | |
| # [output, latency_textbox], | |
| # time_limit=45, | |
| # stream_every=2, | |
| # concurrency_limit=None | |
| # ) | |
| # clear_button.click(clear, outputs=[output]) | |
| with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
| gr.TabbedInterface([microphone, file], ["Microphone", "Transcribe from file"]) | |
| demo.launch() | 
 
			
